Free Access
Issue
ESAIM: M2AN
Volume 44, Number 3, May-June 2010
Page(s) 485 - 508
DOI https://doi.org/10.1051/m2an/2010010
Published online 04 February 2010
  1. M. Ainsworth, A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 45 (2007) 1777–1798 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Ainsworth, A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements. SIAM J. Sci. Comput. 30 (2009) 189–204. [CrossRef] [Google Scholar]
  3. M. Ainsworth and J.T. Oden, A Posterior Error Estimation in Finite Element Analysis. Wiley, New York, USA (2000). [Google Scholar]
  4. D.G. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749–1779. [Google Scholar]
  5. I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44 (1984) 75–102. [CrossRef] [MathSciNet] [Google Scholar]
  6. R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44 (1985) 283–301. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Becker, P. Hansbo and M.G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Meth. Appl. Mech. Engrg. 192 (2003) 723–733. [Google Scholar]
  8. P. Binev, W. Dahmen and R. DeVore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Cochez and S. Nicaise, A posteriori error estimators based on equilibrated fluxes. CMAM (to appear). [Google Scholar]
  10. S. Cochez-Dhondt and S. Nicaise, Equilibrated error estimators for discontinuous Galerkin methods. Numer. Meth. PDE 24 (2008) 1236–1252. [Google Scholar]
  11. M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems. ESAIM: M2AN 33 (1999) 627–649. [CrossRef] [EDP Sciences] [Google Scholar]
  12. W. Dörfler, A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Ern and A.F. Stephansen, A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods. J. Comput. Math. 26 (2008) 488–510. [MathSciNet] [Google Scholar]
  14. A. Ern, S. Nicaise and M. Vohralík, An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Math. Acad. Sci. Paris 345 (2007) 709–712. [Google Scholar]
  15. A. Ern, A.F. Stephansen and P. Zunino, A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29 (2009) 235–256. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Ern, A.F. Stephansen and M. Vohralík, Guaranteed and robust discontinuous galerkin a posteriori error estimates for convection-diffusion-reaction problems. JCAM (to appear). [Google Scholar]
  17. P. Houston, I. Perugia and D. Schötzau, Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator. Comput. Meth. Appl. Mech. Engrg. 194 (2005) 499–510. [CrossRef] [Google Scholar]
  18. O.A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. [CrossRef] [MathSciNet] [Google Scholar]
  19. O.A. Karakashian and F. Pascal, Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45 (2007) 641–665 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  20. K.Y. Kim, A posteriori error analysis for locally conservative mixed methods. Math. Comp. 76 (2007) 43–66 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  21. K.Y. Kim, A posteriori error estimators for locally conservative methods of nonlinear elliptic problems. Appl. Numer. Math. 57 (2007) 1065–1080. [CrossRef] [MathSciNet] [Google Scholar]
  22. P. Ladevèze and D. Leguillon, Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20 (1983) 485–509. [CrossRef] [MathSciNet] [Google Scholar]
  23. K. Mekchay and R.H. Nochetto, Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43 (2005) 1803–1827 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  24. P. Morin, R.H. Nochetto and K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466–488 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  25. P. Morin, R.H. Nochetto and K.G. Siebert, Convergence of adaptive finite element methods. SIAM Rev. 44 (2002) 631–658 (electronic). [Revised reprint of “Data oscillation and convergence of adaptive FEM”. SIAM J. Numer. Anal. 38 (2001) 466–488 (electronic).] [Google Scholar]
  26. B. Rivière and M. Wheeler, A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems. Comput. Math. Appl. 46 (2003) 141–163. [CrossRef] [MathSciNet] [Google Scholar]
  27. D. Schötzau and L. Zhu, A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations. Appl. Numer. Math. 59 (2009) 2236–2255. [CrossRef] [MathSciNet] [Google Scholar]
  28. R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley-Teubner, Chichester-Stuttgart (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you