Free Access
Issue
ESAIM: M2AN
Volume 44, Number 3, May-June 2010
Page(s) 509 - 529
DOI https://doi.org/10.1051/m2an/2010011
Published online 04 February 2010
  1. G. Berkooz, P. Holmes and J.L. Lumley, Turbulence, Coherent Structures, Dynamical Systems and SymmetryCambridge Monographes in Mechanics. Cambridge Universtity Press, UK (1996). [Google Scholar]
  2. T. Bui-Thanh, Model-constrained optimization methods for reduction of parameterized systems. Ph.D. Thesis, MIT, USA (2007). [Google Scholar]
  3. T. Bui-Thanh, M. Damodoran and K. Willcox, Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA Journal 42 (2004) 1505–1516. [CrossRef] [Google Scholar]
  4. T. Bui-Thanh, K. Willcox, O. Ghattas and B. van Bloemen Wanders, Goal-oriented, model-constrained optimization for reduction of large-scale systems. J. Comput Phys. 224 (2007) 880–896. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Everson and L. Sirovich, The Karhunen-Loeve procedure for gappy data. J. Opt. Soc. Am. 12 (1995) 1657–1664. [CrossRef] [Google Scholar]
  6. K. Fukunaga, Introduction to Statistical Recognition. Academic Press, New York, USA (1990). [Google Scholar]
  7. M.A. Grepl, Y. Maday, N.C. Nguyen and A.T. Patera, Efficient reduced-basis treatment of affine and nonlinear partial differential equations. ESAIM: M2AN 41 (2007) 575–605. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  8. M. Heinkenschloss, Formulation and Analysis of a Sequential Quadratic Programming Method for the Optimal Dirichlet Boundary Control of Navier Stokes Flow – Optimal Control: Theory, Methods and Applications. Kluwer Academic Publisher, B.V. (1998) 178–203. [Google Scholar]
  9. M. Hinze and K. Kunisch, Second order methods for optimal control of time – Dependent fluid flow. SIAM J. Contr. Optim. 40 (2001) 925–946. [CrossRef] [MathSciNet] [Google Scholar]
  10. K. Ito and S.S. Ravindran, A reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 143 (1998) 403–425. [CrossRef] [MathSciNet] [Google Scholar]
  11. T. Kato, Perturbation Theory for Linear Operators. Springer Verlag, Germany (1980). [Google Scholar]
  12. K. Kunisch and S. Volkwein, Control of Burgers' equation by reduced order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102 (1999) 345–371. [CrossRef] [MathSciNet] [Google Scholar]
  13. K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90 (2001) 117–148. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Lall, J.E. Marsden and S. Glavaski, Empirical model reduction of controlled nonlinear systems, in Proceedings of the IFAC Congress, Vol. F (1999) 473–478. [Google Scholar]
  15. H.V. Ly and H.T. Tran, Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor. Quarterly Appl. Math. 60 (2002) 631–656. [Google Scholar]
  16. J. Nocedal and S.J. Wright, Numerical Optimization, Springer Series in Operation Research. Second Edition, Springer Verlag, New York, USA (2006). [Google Scholar]
  17. M. Rathinam and L.R. Petzold, A new look at proper orthogonal decomposition. SIAM J. Numer. Anal. 41 (2003) 1893–1925. [CrossRef] [MathSciNet] [Google Scholar]
  18. S.S. Ravindran, Adaptive reduced-order controllers for a thermal flow system using proper orthogonal decomposition. SIAM J. Sci. Comput. 23 (2002) 1924–1942. [CrossRef] [MathSciNet] [Google Scholar]
  19. C.W. Rowley, Model reduction for fluids using balanced proper orthogonal decomposition. Int. J. Bifur. Chaos 15 (2005) 997–1013. [CrossRef] [Google Scholar]
  20. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics. Arch. Comput. Method. E. 15 (2008) 229–275. [CrossRef] [MathSciNet] [Google Scholar]
  21. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. Second edition, Springer, Berlin, Germany (1997). [Google Scholar]
  22. K. Willcox, O. Ghattas, B. von Bloemen Wanders and W. Bader, An optimization framework for goal-oriented, model-based reduction of large-scale systems, in 44th IEEE Conference on Decision and Control, Sevilla, Spain (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you