Free Access
Volume 44, Number 5, September-October 2010
Special Issue on Probabilistic methods and their applications
Page(s) 1049 - 1068
Published online 26 August 2010
  1. A.M. Anile and O. Muscato, Improved hydrodynamical model for carrier transport in semiconductors. Phys. Rev. B 51 (1995) 16728–16740. [CrossRef] [Google Scholar]
  2. V. Borsari and C. Jacoboni, Monte Carlo calculations on electron transport in CdTe. Phys. Stat. Sol. (B) 54 (1972) 649–662. [Google Scholar]
  3. W. Fawcett, A.D. Boardman and S. Swain, Monte Carlo determination of electron transport properties in gallium arsenide. J. Phys. Chem. Solids 31 (1970) 1963–1990. [CrossRef] [Google Scholar]
  4. M.V. Fischetti and S.E. Laux, Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38 (1988) 9721–9745. [CrossRef] [Google Scholar]
  5. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation. Springer, New York (1989). [Google Scholar]
  6. C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Modern Phys. 55 (1983) 645–705. [Google Scholar]
  7. C. Jungemann and B. Meinerzhagen, Hierarchical Device Simulation. The Monte-Carlo Perspective. Springer, Wien (2003). [Google Scholar]
  8. S.E. Laux, M.V. Fischetti, Numerical aspects and implementation of the DAMOCLES Monte Carlo device simulation program, in Monte Carlo Device Simulation: Full Band and Beyond, K. Hess Ed., Kluwer, Boston (1991) 1–26. [Google Scholar]
  9. J.M. Miranda, C. Lin, M. Shaalan, H.L. Hartnagel and J.L. Sebastian, Influence of the minimization of self-scattering events on the Monte Carlo simulation of carrier transport in III-V semiconductors. Semicond. Sci. Technol. 14 (1999) 804–808. [CrossRef] [Google Scholar]
  10. O. Muscato and W. Wagner, Time step truncation in direct simulation Monte Carlo for semiconductors. Compel 24 (2005) 1351–1366. [MathSciNet] [Google Scholar]
  11. U. Ravaioli, Vectorization of Monte Carlo algorithms for semiconductor simulation, in Monte Carlo Device Simulation: Full Band and Beyond, K. Hess Ed., Kluwer, Boston (1991) 267–284. [Google Scholar]
  12. H.D. Rees, Calculation of steady state distribution functions by exploiting stability. Phys. Lett. A 26 (1968) 416–417. [CrossRef] [Google Scholar]
  13. H.D. Rees, Calculation of distribution functions by exploiting the stability of the steady state. J. Phys. Chem. Solids 30 (1969) 643–655. [CrossRef] [Google Scholar]
  14. S. Rjasanow and W. Wagner, Stochastic Numerics for the Boltzmann Equation. Springer, Berlin (2005). [Google Scholar]
  15. E. Sangiorgi, B. Ricco and F. Venturi, MOS2: an efficient Monte Carlo simulator for MOS devices. IEEE Trans. Computer-Aided Des. 7 (1988) 259–271. [CrossRef] [Google Scholar]
  16. V. Sverdlov, E. Ungersboeck, H. Kosina and S. Selberherr, Current transport models for nanoscale semiconductor devices. Mater. Sci. Eng. R 58 (2008) 228–270. [CrossRef] [Google Scholar]
  17. R.M. Yorston, Free-flight time generation in the Monte Carlo simulation of carrier transport in semiconductors. J. Comput. Phys. 64 (1986) 177–194. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you