Free Access
Issue
ESAIM: M2AN
Volume 45, Number 1, January-February 2011
Page(s) 39 - 89
DOI https://doi.org/10.1051/m2an/2010030
Published online 15 April 2010
  1. F. Antoci, Some necessary and some sufficient conditions for the compactness of the embedding of weighted Sobolev spaces. Ric. Mat. 52 (2003) 55–71. [Google Scholar]
  2. A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck equations. Comm. PDE 26 (2001) 43–100. [CrossRef] [Google Scholar]
  3. J.W. Barrett and R. Nürnberg, Convergence of a finite-element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Numer. Anal. 24 (2004) 323–363. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.W. Barrett and E. Süli, Existence of global weak solutions to some regularized kinetic models of dilute polymers. Multiscale Model. Simul. 6 (2007) 506–546. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  5. J.W. Barrett and E. Süli, Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off. Math. Models Methods Appl. Sci. 18 (2008) 935–971. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. J.W. Barrett and E. Süli, Numerical approximation of corotational dumbbell models for dilute polymers. IMA J. Numer. Anal. 29 (2009) 937–959. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.W. Barrett, C. Schwab and E. Süli, Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci. 15 (2005) 939–983. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Bird, C. Curtiss, R. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory. John Wiley and Sons, New York (1987). [Google Scholar]
  9. S. Bobkov and M. Ledoux, From Brunn–Minkowski to Brascamp–Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10 (2000) 1028–1052. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Brandts, S. Korotov, M. Křížek and J. Šolc, On nonobtuse simplicial partitions. SIAM Rev. 51 (2009) 317–335. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin (1991). [Google Scholar]
  12. S. Cerrai, Second-order PDEs in Finite and Infinite Dimension, Lecture Notes in Mathematics 1762. Springer-Verlag, Berlin (2001). [Google Scholar]
  13. P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  14. P. Constantin, Nonlinear Fokker–Planck Navier–Stokes systems. Commun. Math. Sci. 3 (2005) 531–544. [MathSciNet] [Google Scholar]
  15. G. Da Prato and A. Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition. J. Differ. Equ. 198 (2004) 35–52. [CrossRef] [Google Scholar]
  16. L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker–Planck equation. Comm. Pure Appl. Math. 54 (2001) 1–42. [CrossRef] [MathSciNet] [Google Scholar]
  17. Q. Du, C. Liu and P. Yu, FENE dumbbell models and its several linear and nonlinear closure approximations. Multiscale Model. Simul. 4 (2005) 709–731. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  18. W. E, T.J. Li and P.-W. Zhang, Well-posedness for the dumbbell model of polymeric fluids. Com. Math. Phys. 248 (2004) 409–427. [Google Scholar]
  19. A.W. El-Kareh and L.G. Leal, Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion. J. Non-Newton. Fluid Mech. 33 (1989) 257–287. [CrossRef] [Google Scholar]
  20. D. Eppstein, J.M. Sullivan and A. Üngör, Tiling space and slabs with acute tetrahedra. Comput. Geom. 27 (2004) 237–255. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Grün and M. Rumpf, Nonnegativity preserving numerical schemes for the thin film equation. Numer. Math. 87 (2000) 113–152. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem. I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. [CrossRef] [MathSciNet] [Google Scholar]
  23. J.-I. Itoh and T. Zamfirescu, Acute triangulations of the regular dodecahedral surface. European J. Combin. 28 (2007) 1072–1086. [CrossRef] [MathSciNet] [Google Scholar]
  24. B. Jourdain, T. Lelièvre and C. Le Bris, Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal. 209 (2004) 162–193. [CrossRef] [MathSciNet] [Google Scholar]
  25. B. Jourdain, T. Lelièvre, C. Le Bris and F. Otto, Long-time asymptotics of a multiscle model for polymeric fluid flows. Arch. Rat. Mech. Anal. 181 (2006) 97–148. [CrossRef] [MathSciNet] [Google Scholar]
  26. D. Knezevic and E. Süli, Spectral Galerkin approximation of Fokker–Planck equations with unbounded drift. ESAIM: M2AN 43 (2009) 445–485. [CrossRef] [EDP Sciences] [Google Scholar]
  27. D. Knezevic and E. Süli, A heterogeneous alternating-direction method for a micro-macro dilute polymeric fluid model. ESAIM: M2AN 43 (2009) 1117–1156. [CrossRef] [EDP Sciences] [Google Scholar]
  28. S. Korotov and M. Křížek, Acute type refinements of tetrahedral partitions of polyhedral domains. SIAM J. Numer. Anal. 39 (2001) 724–733. [CrossRef] [MathSciNet] [Google Scholar]
  29. S. Korotov and M. Křížek, Global and local refinement techniques yielding nonobtuse tetrahedral partitions. Comput. Math. Appl. 50 (2005) 1105–1113. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  30. A. Kufner, Weighted Sobolev Spaces. Teubner, Stuttgart (1980). [Google Scholar]
  31. T. Lelièvre, Modèles multi-échelles pour les fluides viscoélastiques. Ph.D. Thesis, École National des Ponts et Chaussées, Marne-la-Vallée, France (2004). [Google Scholar]
  32. T. Li and P.-W. Zhang, Mathematical analysis of multi-scale models of complex fluids. Commun. Math. Sci. 5 (2007) 1–51. [MathSciNet] [Google Scholar]
  33. T. Li, H. Zhang and P.-W. Zhang, Local existence for the dumbbell model of polymeric fuids. Comm. Partial Differ. Equ. 29 (2004) 903–923. [CrossRef] [Google Scholar]
  34. F.-H. Lin, C. Liu and P. Zhang, On a micro-macro model for polymeric fluids near equilibrium. Comm. Pure Appl. Math. 60 (2007) 838–866. [CrossRef] [MathSciNet] [Google Scholar]
  35. P.-L. Lions and N. Masmoudi, Global existence of weak solutions to some micro-macro models. C. R. Math. Acad. Sci. Paris 345 (2007) 15–20. [CrossRef] [MathSciNet] [Google Scholar]
  36. L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups. Chapman & Hall/CRC, Boca Raton (2007). [Google Scholar]
  37. A. Lozinski, C. Chauvière, J. Fang and R.G. Owens, Fokker–Planck simulations of fast flows of melts and concentrated polymer solutions in complex geometries. J. Rheol. 47 (2003) 535–561. [CrossRef] [Google Scholar]
  38. A. Lozinski, R.G. Owens and J. Fang, A Fokker–Planck-based numerical method for modelling non-homogeneous flows of dilute polymeric solutions. J. Non-Newton. Fluid Mech. 122 (2004) 273–286. [CrossRef] [Google Scholar]
  39. N. Masmoudi, Well posedness of the FENE dumbbell model of polymeric flows. Comm. Pure Appl. Math. 61 (2008) 1685–1714. [CrossRef] [MathSciNet] [Google Scholar]
  40. F. Otto and A. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules. Comm. Math. Phys. 277 (2008) 729–758. [CrossRef] [MathSciNet] [Google Scholar]
  41. M. Renardy, An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal. 22 (1991) 1549–151. [Google Scholar]
  42. J.D. Schieber, Generalized Brownian configuration field for Fokker–Planck equations including center-of-mass diffusion. J. Non-Newton. Fluid Mech. 135 (2006) 179–181. [CrossRef] [Google Scholar]
  43. W.H.A. Schilders and E.J.W. ter Maten, Eds., Numerical Methods in Electromagnetics, Handbook of Numerical Analysis XIII. Amsterdam, North-Holland (2005). [Google Scholar]
  44. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Math. Pur. Appl. 146 (1987) 65–96. [Google Scholar]
  45. R. Temam, Navier–Stokes Equations – Theory and Numerical Analysis, Studies in Mathematics and its Applications 2. Third Edition, Amsterdam, North-Holland (1984). [Google Scholar]
  46. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. Second Edition, Johann Ambrosius Barth Publ., Heidelberg/Leipzig (1995). [Google Scholar]
  47. P. Yu, Q. Du and C. Liu, From micro to macro dynamics via a new closure approximation to the FENE model of polymeric fluids. Multiscale Model. Simul. 3 (2005) 895–917. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you