Free Access
Issue
ESAIM: M2AN
Volume 45, Number 5, September-October 2011
Page(s) 901 - 913
DOI https://doi.org/10.1051/m2an/2011001
Published online 15 April 2011
  1. M.S. Agranovich, Elliptic boundary problems, in Partial differential equations IX, M.S. Agranovich, Y.V. Egorov and M.A. Shubin Eds., Encyclopaedia of Mathematical Sciences 79, Springer (1997) 1–144. [Google Scholar]
  2. R. Brahadwaj, B. Mohammadi and J. Santiago, Design and optimization of on-chip capillary electrophoresis. Electrophoresis J. 23 (2002) 2729–2744. [CrossRef] [Google Scholar]
  3. G. Bruin, Recent developments in electrokinetically driven analysis of microfabricated devices. Electrophoresis 21 (2000) 3931–3951. [CrossRef] [PubMed] [Google Scholar]
  4. A. Douglis and L. Nirenberg, Interior estimates for elliptic systems of partial differential equations. Comm. Pure Appl. Math. 8 (1955) 503–538. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Dudnikov and S. Samborski, Linear overdetermined systems of partial differential equations, in Partial Differential Equations VIII, M. Shubin Ed., Encyclopaedia of Mathematical Sciences 65, Springer (1996) 1–86. [Google Scholar]
  6. S.D. Eidelman, Parabolic equations, in Partial differential equations VI, M.A. Shubin Ed., Encyclopaedia of Mathematical Sciences 63, Springer (1994) 201–313. [Google Scholar]
  7. M.G. El Hak, The MEMS Handbook, Handbook series for Mechanical Engineering 7. CRC Press (2002). [Google Scholar]
  8. K. Krupchyk, W. Seiler and J. Tuomela, Overdetermined elliptic systems. Found. Comp. Math. 6 (2006) 309–351. [CrossRef] [Google Scholar]
  9. K. Krupchyk and J. Tuomela, Completion of overdetermined parabolic PDEs. J. Symb. Comput. 43 (2008) 153–167. [CrossRef] [Google Scholar]
  10. H. Lin, B. Storey, M. Oddy, C.-H. Chen and J. Santiago, Instability of electrokinetic microchannel flows with conductivity gradients. Phys. Fluids 16 (2004) 1876–1899. [Google Scholar]
  11. M. Marden, On the zeros of certain rational functions. Trans. Amer. Math. Soc. 32 (1930) 658–668. [CrossRef] [MathSciNet] [Google Scholar]
  12. B. Mohammadi and J. Tuomela, Simplifying numerical solution of constrained PDE systems through involutive completion. ESAIM: M2AN 39 (2005) 909–929. [CrossRef] [EDP Sciences] [Google Scholar]
  13. B. Mohammadi and J. Tuomela, Involutive upgrades of Navier-Stokes solvers. Int. J. Comput. Fluid Dyn. 23 (2009) 439–447. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Oddy and J. Santiago, Multiple-species model for electrokinetic instability. Phys. Fluids 17 (2005) 1245–1278. [Google Scholar]
  15. B. Perthame, Transport equations in biology, Frontiers in Mathematics. Birkhäuser, Basel (2007). [Google Scholar]
  16. T. Poinsot and D. Veynante, Theoretical and Numerical Combustion. 2nd edn., R.T. Edwards, Inc. (2005). [Google Scholar]
  17. J.F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups. Mathematics and its applications 14. Gordon and Breach Science Publishers (1978). [Google Scholar]
  18. R.F. Probstein, Physicochemical Hydrodynamics. Wiley (1995). [Google Scholar]
  19. W. Seiler, Involution – The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics 24. Springer, 2010. [Google Scholar]
  20. V.A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general form. Trudy Mat. Inst. Steklov. 83 (1965) 3–163 (in Russian). [MathSciNet] [Google Scholar]
  21. D. Spencer, Overdetermined systems of linear partial differential equations. Bull. Amer. Math. Soc. 75 (1969) 179–239. [CrossRef] [MathSciNet] [Google Scholar]
  22. T. Squires and S.R. Quake, Instability of electrokinetic microchannel flows with conductivity gradients. Rev. Mod. Phys. 77 (2005) 977–1026. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you