Free Access
Volume 45, Number 5, September-October 2011
Page(s) 925 - 945
Published online 26 April 2011
  1. J. Ahn and D.E. Stewart, Dynamic frictionless contact in linear viscoelasticity. IMA J. Numer. Anal. 29 (2009) 43–71. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Barboteu, J.R. Fernández and T.-V. Hoarau-Mantel, A class of evolutionary variational inequalities with applications in viscoelasticity. Math. Models Methods Appl. Sci. 15 (2005) 1595–1617. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Barboteu, J.R. Fernández and R. Tarraf, Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity. Comput. Methods Appl. Mech. Eng. 197 (2008) 3724–3732. [Google Scholar]
  4. A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2005) 1117–1138. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Bernardi and R. Verfürth, A posteriori error analysis of the fully discretized time-dependent Stokes equations. ESAIM: M2AN 38 (2004) 437–455. [Google Scholar]
  6. D.A. Burkett and R.C. MacCamy, Differential approximation for viscoelasticity. J. Integral Equations Appl. 6 (1994) 165–190. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Campo, J.R. Fernández, W. Han and M. Sofonea, A dynamic viscoelastic contact problem with normal compliance and damage. Finite Elem. Anal. Des. 42 (2005) 1–24. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Campo, J. R. Fernández, K.L. Kuttler, M. Shillor and J.M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage. Comput. Methods Appl. Mech. Eng. 196 (2006) 476–488. [Google Scholar]
  9. P.G. Ciarlet, The finite element method for elliptic problems, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II, North Holland (1991) 17–352. [Google Scholar]
  10. P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. [Google Scholar]
  11. M. Cocou, Existence of solutions of a dynamic Signorini's problem with nonlocal friction in viscoelasticity. Z. Angew. Math. Phys. 53 (2002) 1099–1109. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Del Piero and L. Deseri, On the concepts of state and free energy in linear viscoelasticity. Arch. Rational Mech. Anal. 138 (1997) 1–35. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Duvaut and J.L. Lions, Inequalities in mechanics and physics. Springer Verlag, Berlin (1976). [Google Scholar]
  14. C. Eck, J. Jarusek and M. Krbec, Unilateral contact problems. Variational methods and existence theorems, Pure and Applied Mathematics 270. Chapman & Hall/CRC, Boca Raton (2005). [Google Scholar]
  15. M. Fabrizio and S. Chirita, Some qualitative results on the dynamic viscoelasticity of the Reissner-Mindlin plate model. Quart. J. Mech. Appl. Math. 57 (2004) 59–78. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Fabrizio and A. Morro, Mathematical problems in linear viscoelasticity, SIAM Studies in Applied Mathematics 12. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992). [Google Scholar]
  17. J.R. Fernández and P. Hild, A priori and a posteriori error analyses in the study of viscoelastic problems. J. Comput. Appl. Math. 225 (2009) 569–580. [CrossRef] [MathSciNet] [Google Scholar]
  18. W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity. American Mathematical Society-International Press (2002). [Google Scholar]
  19. C. Johnson, Y.-Y. Nie and V. Thomée, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277–291. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Karamanou, S. Shaw, M.K. Warby and J.R. Whiteman, Models, algorithms and error estimation for computational viscoelasticity. Comput. Methods Appl. Mech. Eng. 194 (2005) 245–265. [CrossRef] [Google Scholar]
  21. K.L. Kuttler, M. Shillor and J.R. Fernández, Existence and regularity for dynamic viscoelastic adhesive contact with damage. Appl. Math. Optim. 53 (2006) 31–66. [CrossRef] [MathSciNet] [Google Scholar]
  22. P. Le Tallec, Numerical analysis of viscoelastic problems, Research in Applied Mathematics. Springer-Verlag, Berlin (1990). [Google Scholar]
  23. S. Migórski and A. Ochal, A unified approach to dynamic contact problems in viscoelasticity, J. Elasticity 83 (2006) 247–275. [Google Scholar]
  24. J.E. Muñoz Rivera, Asymptotic behaviour in linear viscoelasticity. Quart. Appl. Math. 52 (1994) 628–648. [MathSciNet] [Google Scholar]
  25. M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Eng. 167 (1998) 223–237. [Google Scholar]
  26. B. Rivière, S. Shaw and J.R. Whiteman, Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems. Numer. Methods Partial Differential Equations 23 (2007) 1149–1166. [CrossRef] [MathSciNet] [Google Scholar]
  27. R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley and Teubner (1996). [Google Scholar]
  28. R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40 (2003) 195–212. [CrossRef] [MathSciNet] [Google Scholar]
  29. M.A. Zocher, S.E. Groves and D.H. Allen, A three-dimensional finite element formulation for thermoviscoelastic orthotropic media. Int. J. Numer. Methods Eng. 40 (1997) 2267–2288. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you