Free Access
Issue |
ESAIM: M2AN
Volume 45, Number 5, September-October 2011
|
|
---|---|---|
Page(s) | 915 - 924 | |
DOI | https://doi.org/10.1051/m2an/2011003 | |
Published online | 06 April 2011 |
- J. Brandts and M. Křížek, Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003) 489–505. [CrossRef] [MathSciNet] [Google Scholar]
- W. Chen and M. Křížek, What is the smallest possible constant in Céa's lemma? Appl. Math. 51 (2006) 128–144. [Google Scholar]
- W. Chen and M. Křížek, Lower bounds for the interpolation error for finite elements. Mathematics in Practice and Theory 39 (2009) 159–164 (in Chinese). [Google Scholar]
- P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). [Google Scholar]
- S. Franz and T. Linss, Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection-diffusion problems with characteristic layers. Numer. Methods Partial Differ. Equ. 24 (2008) 144–164. [CrossRef] [Google Scholar]
- Ch. Grossmann, H.-G. Roos and M. Stynes, Numerical treatment of partial differential equations. Springer-Verlag, Berlin, Heidelberg (2007). [Google Scholar]
- S. Korotov, Two-sided a posteriori error estimates for linear elliptic problems with mixed boundary conditions. Appl. Math. 52 (2007) 235–249. [CrossRef] [MathSciNet] [Google Scholar]
- M. Křížek and P. Neittaanmäki, Finite element approximation of variational problems and applications. Longman Scientific & Technical, Harlow (1990). [Google Scholar]
- M. Křížek and P. Neittaanmäki, Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Kluwer, Dordrecht (1996). [Google Scholar]
- Q. Lin and J. Lin, Finite element methods: Accuracy and improvement. Science Press, Beijing (2006). [Google Scholar]
- G.I. Marchuk and V.I. Agoshkov, Introduction aux méthodes des éléments finis. Mir, Moscow (1985). [Google Scholar]
- J. Nečas and I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: An introduction. Elsevier, Amsterdam (1981). [Google Scholar]
- L.A. Oganesjan and L.A. Ruhovec, An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary. Ž. Vyčisl. Mat. i Mat. Fyz. 9 (1969) 1102–1120. [Google Scholar]
- G. Strang and G. Fix, An analysis of the finite element method. Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1973). [Google Scholar]
- R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. John Wiley & Sons, Chichester, Teubner, Stuttgart (1996). [Google Scholar]
- L.B. Wahlbin, Superconvergence in Galerkin finite element methods, Lect. Notes in Math. 1605. Springer, Berlin (1995). [Google Scholar]
- L. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimation for mildly structured grids. Math. Comp. 73 (2004) 1139–1152. [CrossRef] [MathSciNet] [Google Scholar]
- N.N. Yan, Superconvergence analysis and a posteriori error estimation in finite element methods. Science Press, Beijing (2008). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.