Free Access
Volume 45, Number 5, September-October 2011
Page(s) 915 - 924
Published online 06 April 2011
  1. J. Brandts and M. Křížek, Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003) 489–505. [CrossRef] [MathSciNet]
  2. W. Chen and M. Křížek, What is the smallest possible constant in Céa's lemma? Appl. Math. 51 (2006) 128–144.
  3. W. Chen and M. Křížek, Lower bounds for the interpolation error for finite elements. Mathematics in Practice and Theory 39 (2009) 159–164 (in Chinese).
  4. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978).
  5. S. Franz and T. Linss, Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection-diffusion problems with characteristic layers. Numer. Methods Partial Differ. Equ. 24 (2008) 144–164. [CrossRef]
  6. Ch. Grossmann, H.-G. Roos and M. Stynes, Numerical treatment of partial differential equations. Springer-Verlag, Berlin, Heidelberg (2007).
  7. S. Korotov, Two-sided a posteriori error estimates for linear elliptic problems with mixed boundary conditions. Appl. Math. 52 (2007) 235–249. [CrossRef] [MathSciNet]
  8. M. Křížek and P. Neittaanmäki, Finite element approximation of variational problems and applications. Longman Scientific & Technical, Harlow (1990).
  9. M. Křížek and P. Neittaanmäki, Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Kluwer, Dordrecht (1996).
  10. Q. Lin and J. Lin, Finite element methods: Accuracy and improvement. Science Press, Beijing (2006).
  11. G.I. Marchuk and V.I. Agoshkov, Introduction aux méthodes des éléments finis. Mir, Moscow (1985).
  12. J. Nečas and I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: An introduction. Elsevier, Amsterdam (1981).
  13. L.A. Oganesjan and L.A. Ruhovec, An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary. Ž. Vyčisl. Mat. i Mat. Fyz. 9 (1969) 1102–1120.
  14. G. Strang and G. Fix, An analysis of the finite element method. Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1973).
  15. R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. John Wiley & Sons, Chichester, Teubner, Stuttgart (1996).
  16. L.B. Wahlbin, Superconvergence in Galerkin finite element methods, Lect. Notes in Math. 1605. Springer, Berlin (1995).
  17. L. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimation for mildly structured grids. Math. Comp. 73 (2004) 1139–1152. [CrossRef] [MathSciNet]
  18. N.N. Yan, Superconvergence analysis and a posteriori error estimation in finite element methods. Science Press, Beijing (2008).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you