Free Access
Volume 45, Number 6, November-December 2011
Page(s) 1081 - 1113
Published online 28 June 2011
  1. V. Arnăutu, D. Hömberg and J. Sokołowski, Convergence results for a nonlinear parabolic control problem. Numer. Funct. Anal. Optim. 20 (1999) 805–824. [CrossRef] [MathSciNet] [Google Scholar]
  2. D.N. Arnold, An interior penalty method for discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. [CrossRef] [MathSciNet] [Google Scholar]
  3. D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [CrossRef] [MathSciNet] [Google Scholar]
  4. I. Babuška, The finite element method with penalty. Math. Comput. 27 (1973) 221–228. [Google Scholar]
  5. C. Bernardi, M. Dauge and Y. Maday, Polynomials in the Sobolev world. Preprint of the Laboratoire Jacques-Louis Lions R03038 (2003). [Google Scholar]
  6. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). [Google Scholar]
  7. M. Crouzeix, V. Thomee, L.B. Wahlbin, Error estimates for spatial discrete approximation of semilinear parabolic equation with initial data of low regularity. Math. Comput. 53 187 (1989) 25–41. [Google Scholar]
  8. J. Douglas, Jr. and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing Methods in Applied Sciences, Lecture Notes in Phys. 58. Springer-Verlag, Berlin (1976). [Google Scholar]
  9. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77. [CrossRef] [MathSciNet] [Google Scholar]
  10. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems II: optimal error estimates in Formula and Formula . SIAM J. Numer. Anal. 32 (1995) 706–740. [CrossRef] [MathSciNet] [Google Scholar]
  11. L.C. Evans, Partial Differential Equations. American Mathematics Society, Providence, Rhode Island (1998). [Google Scholar]
  12. T. Gudi, N. Nataraj and A.K. Pani, Discontinuous Galerkin methods for quasi-linear elliptic problems of nonmonotone type. SIAM J. Numer. Anal. 45 (2007) 163–192. [CrossRef] [MathSciNet] [Google Scholar]
  13. T. Gudi, N. Nataraj and A.K. Pani, hp-discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems. Numer. Math. 109 (2008) 233–268. [CrossRef] [MathSciNet] [Google Scholar]
  14. T. Gudi, N. Nataraj and A.K. Pani, An hp-local discontinuous Galerkin method for some quasilinear elliptic boundary value problems of nonmonotone type. Math. Comput. 77 (2008) 731–756. [Google Scholar]
  15. N. Gupta, N. Nataraj and A.K. Pani, An optimal control problem of laser surface hardening of steel. Int. J. Numer. Anal. Model. 7 (2010). [Google Scholar]
  16. N. Gupta, N. Nataraj and A.K. Pani, A priori error estimates for the optimal control of laser surface hardening of steel. Paper communicated. [Google Scholar]
  17. D. Hömberg, A mathematical model for the phase transitions in eutectoid carbon steel. IMA J. Appl. Math. 54 (1995) 31–57. [CrossRef] [MathSciNet] [Google Scholar]
  18. D. Hömberg, Irreversible phase transitions in steel. Math. Methods Appl. Sci. 20 (1997) 59–77. [CrossRef] [MathSciNet] [Google Scholar]
  19. D. Hömberg and J. Fuhrmann, Numerical simulation of surface hardening of steel. Int. J. Numer. Meth. Heat Fluid Flow 9 (1999) 705–724. [CrossRef] [Google Scholar]
  20. D. Hömberg and J. Sokolowski, Optimal control of laser hardening. Adv. Math. Sci. 8 (1998) 911–928. [Google Scholar]
  21. D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition. Math. Comput. Model. 37 (2003) 1003–1028. [Google Scholar]
  22. D. Hömberg and W. Weiss, PID-control of laser surface hardening of steel. IEEE Trans. Control Syst. Technol. 14 (2006) 896–904. [CrossRef] [Google Scholar]
  23. P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133–2163. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Lasis and E. Süli, hp-version discontinuous Galerkin finite element methods for semilinear parabolic problems. Report No. 03/11, Oxford university computing laboratory (2003). [Google Scholar]
  25. A. Lasis and E. Süli, Poincaré-type inequalities for broken Sobolev spaces. Isaac Newton Institute for Mathematical Sciences, Preprint No. NI03067-CPD (2003). [Google Scholar]
  26. J.B. Leblond and J. Devaux, A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metall. 32 (1984) 137–146. [CrossRef] [Google Scholar]
  27. V.I. Mazhukin and A.A. Samarskii, Mathematical modelling in the technology of laser treatments of materials. Surveys Math. Indust. 4 (1994) 85-149. [MathSciNet] [Google Scholar]
  28. D. Meidner, and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems part I: problems without control constraints. SIAM J. Control Optim. 47 (2007) 1150–1177. [Google Scholar]
  29. J.A. Nitsche, Über ein Variationprinzip zur Lösung Dirichlet-Problemen bei Verwen-dung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. [Google Scholar]
  30. J.T. Oden, I. Babuška and C.E. Baumann, A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146 (1998) 491–519. [CrossRef] [MathSciNet] [Google Scholar]
  31. S. Prudhomme, F. Pascal and J.T. Oden, Review of error estimation for discontinuous Galerkin method. TICAM-report 00-27 (2000). [Google Scholar]
  32. B. Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. Frontiers in Mathematics 35. SIAM 2008. ISBN: 978-0-898716-56-6. [Google Scholar]
  33. B. Rivière and M.F. Wheeler, A discontinuous Galerkin method applied to nonlinear parabolic equations. The Center for Substance Modeling, TICAM, The University of Texas, Austin TX 78712, USA. [Google Scholar]
  34. B. Rivière, M.F. Wheeler and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 902–931. [CrossRef] [MathSciNet] [Google Scholar]
  35. V. Thomée, Galerkin finite element methods for parabolic problems. Springer (1997). [Google Scholar]
  36. S. Volkwein, Non-linear conjugate gradient method for the optimal control of laser surface hardening, Optim. Methods Softw. 19 (2004) 179–199. [Google Scholar]
  37. M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you