Free Access
Issue
ESAIM: M2AN
Volume 45, Number 6, November-December 2011
Page(s) 1059 - 1080
DOI https://doi.org/10.1051/m2an/2011012
Published online 28 June 2011
  1. http://www.openfoam.com. [Google Scholar]
  2. N. Aage, T.H. Poulsen, A. Gersborg-Hansen and O. Sigmund, Topology optimization of large scale Stokes flow problems. Struct. Multidisc. Optim. 35 (2008) 175–180. [CrossRef] [Google Scholar]
  3. S. Agmon, Lectures on elliptic boundary value problems. Van Nostrand, Princeton, N.J. (1965). [Google Scholar]
  4. G. Allaire, Conception optimale de structures, Mathématiques et Applications 58. Springer (2007). [Google Scholar]
  5. L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial Differential Equations 1 (1993) 55–69. [Google Scholar]
  6. C.S. Andreasen, A.R. Gersborg and Ole Sigmund, Topology optimization of microfluidic mixers. Int. J. Numer. Methods Fluids 61 (2008) 498–513. [CrossRef] [Google Scholar]
  7. H. Attouch, G. Buttazzo and G. Michaille, Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization. SIAM (2006) 648. ISBN 9780898716009. [Google Scholar]
  8. M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming. John Wiley & Sons, Inc, New York (1993). [Google Scholar]
  9. M.P. Bendsøe and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Engrg. 71 (1988) 197–224. CODEN CMMECC. ISSN 0045-7825. [Google Scholar]
  10. M.P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods, and Applications. Springer-Verlag, Berlin (2003). 370. ISBN 3-540-42992-1. [Google Scholar]
  11. J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer-Verlag, New York (2000), p. 601. ISBN 0-387-98705-3. [Google Scholar]
  12. T. Borrvall and J. Petersson, Topology optimization of fluids in Stokes flow. Int. J. Numer. Methods Fluids 41 (2003) 77–107. CODEN IJNFDW. ISSN 0271-2091. [Google Scholar]
  13. B. Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences 78. Springer-Verlag, Berlin (1989). x+308 ISBN 3-540-50491-5. [Google Scholar]
  14. D.A. Di Pietro and A. Ern, Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comput. 79 (2010) 1303–1330. [CrossRef] [MathSciNet] [Google Scholar]
  15. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press (1992). [Google Scholar]
  16. A. Evgrafov, On the limits of porous materials in the topology optimization of Stokes flows. Appl. Math. Optim. 52 (2005) 263–267. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Evgrafov, Topology optimization of slightly compressible fluids. Z. Angew. Math. Mech. 86 (2005) 46–62. [CrossRef] [Google Scholar]
  18. A. Evgrafov, G. Pingen and K. Maute, Topology optimization of fluid problems by the lattice Boltzmann method, in IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials: Status and Perspectives, edited by M.P. Bendsøe, N. Olhoff and O. Sigmund. Springer, Netherlands (2006) 559–568. [Google Scholar]
  19. A. Evgrafov, G. Pingen and K. Maute, Topology optimization of fluid domains: Kinetic theory approach. Z. Angew. Math. Mech. 88 (2008) 129–141. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Evgrafov, K. Maute, R.G. Yang and M.L. Dunn, Topology optimization for nano-scale heat transfer. Int. J. Numer. Methods Engrg. 77 (2009) 285. ISSN 00295981. [CrossRef] [Google Scholar]
  21. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions 7. North Holland (2000) 713–1020. [Google Scholar]
  22. R. Eymard, T. Gallouët and R. Herbin, A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal 26 (2006) 326–353. http://imajna.oxfordjournals.org/cgi/content/abstract/26/2/326. [CrossRef] [MathSciNet] [Google Scholar]
  23. R. Eymard, T. Gallouët, R. Herbin and J.-C. Latche, Analysis tools for finite volume schemes. Acta Math. Univ. Comenianae LXXVI (2007) 111–136. [Google Scholar]
  24. P. Fernandes, J.M. Guedes and H. Rodrigues, Topology optimization of three-dimensional linear elastic structures with a constraint on “perimeter”. Comput. Struct. 73 (1999) 583–594. CODEN CMSTCJ. ISSN 0045-7949. [Google Scholar]
  25. T. Gallouët, R. Herbin and M.H. Vignal, Error estimates on the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal. 37 (2000) 1935–1972. http://link.aip.org/link/?SNA/37/1935/1. [CrossRef] [MathSciNet] [Google Scholar]
  26. A. Gersborg-Hansen, M. Bendsøe and O. Sigmund, Topology optimization of heat conduction problems using the finite volume method. Struct. Multidisc. Optim. 31 (2006) 251–259. ISSN 1615-147X. [CrossRef] [Google Scholar]
  27. A. Gersborg-Hansen, O. Sigmund and R.B. Haber, Topology optimization of channel flow problems. Struct. Multidisc. Optim. 30 (2005) 181–192. [CrossRef] [Google Scholar]
  28. M.M. Gregersen, F. Okkels, M.Z. Bazant and H. Bruus, Topology and shape optimization of induced-charge electro-osmotic micropumps. New J. Phys. 11 (2009) 075019. http://stacks.iop.org/1367-2630/11/i=7/a=075019. [CrossRef] [Google Scholar]
  29. R.B. Haber, M.P. Bendsøe and C.S. Jog, Perimeter constrained topology optimization of continuum structures, in IUTAM Symposium on Optimization of Mechanical Systems (Stuttgart, 1995). Solid Mech. Appl. 43. Kluwer Acad. Publ., Dordrecht (1996) 113–120. [Google Scholar]
  30. F.R. Klimetzek, J. Paterson and O. Moos, Autoduct: topology optimization for fluid flow, in Proceedings of Konferenz für angewandte Optimierung. Karlsruhe (2006). [Google Scholar]
  31. S. Kreissl, G. Pingen, A. Evgrafov and K. Maute, Topology optimization of flexible micro-fluidic devices. Struct. Multidisc. Optim. 42 (2010) 495–516. ISSN 1615-147X. http://dx.doi.org/10.1007/s00158-010-0526-6. [CrossRef] [Google Scholar]
  32. B. Mohammadi and O. Pironneau, Applied shape optimization for fluids. Numerical Mathematics and Scientific Computation, Oxford University Press, New York (2001) xvi+251. ISBN 0-19-850743-7. [Google Scholar]
  33. O. Moos, F.R. Klimetzek and R. Rossmann, Bionic optimization of air-guiding systems, in Proceedings of SAE 2004 World Congress & Exhibition. Detroit, MI, USA, Society of Automotive Engineering, Inc (2004) 95–100. [Google Scholar]
  34. F. Okkels and H. Bruus, Design of micro-fluidic bio-reactors using topology optimization. J. Comput. Theoret. Nano. 4 (2007) 814–816. [Google Scholar]
  35. L.H. Olesen, F. Okkels and H. Bruus, A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow. Int. J. Numer. Meth. Engrg. 65 (2006) 975–1001. [CrossRef] [Google Scholar]
  36. C. Othmer, A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Internat. J. Numer. Methods Fluids 58 (2008). [Google Scholar]
  37. C. Othmer, Th. Kaminski and R. Giering, Computation of topological sensitivities in fluid dynamics: Cost function versatility, in ECCOMAS CFD 2006, Delft (2006). [Google Scholar]
  38. J. Outrata, M. Kočvara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht (1998) xxii+273. ISBN 0-7923-5170-3. [Google Scholar]
  39. J. Petersson, Some convergence results in perimeter-controlled topology optimization. Comput. Methods Appl. Mech. Engrg. 171 (1999) 123–140. [Google Scholar]
  40. G. Pingen, A. Evgrafov and K. Maute, A parallel Schur complement solver for the solution of the adjoint steady-state lattice Boltzmann equations: application to design optimization. Int. J. Comput. Fluid Dynamics 22 (2008) 464–475. [Google Scholar]
  41. G. Pingen, A. Evgrafov and K. Maute, Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization. Comput. Fluids 38 (2009) 910–923. [CrossRef] [MathSciNet] [Google Scholar]
  42. G. Pingen, M. Waidmann, A. Evgrafov and K. Maute, A parametric level-set approach for topology optimization of flow domains. Struct. Multidisc. Optim. 41 (2010) 117–131. ISSN 1615-147X. http://dx.doi.org/10.1007/s00158-009-0405-1. [CrossRef] [Google Scholar]
  43. K. Svanberg, The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Engrg. 24 (1987) 359–373. CODEN IJNMBH. ISSN 0029-5981. [Google Scholar]
  44. K. Svanberg, A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12 (2002) 555–573. ISSN 1095-7189. [CrossRef] [Google Scholar]
  45. A.-M. Toader, Convergence of an algorithm in optimal design. Struct. Optim. 13 (1997) 195–198. [CrossRef] [Google Scholar]
  46. E. Wadbro and M. Berggren, Megapixel topology optimization on a graphics processing unit. SIAM Rev. 5 (2009) 707–721. [CrossRef] [Google Scholar]
  47. E. Zeidler, Applied Functional Analysis: Main Principles and Their Applications, 1st edition. Springer (1995). ISBN 0387944222. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you