Free Access
Issue
ESAIM: M2AN
Volume 46, Number 2, November-December 2012
Page(s) 465 - 489
DOI https://doi.org/10.1051/m2an/2011148
Published online 19 December 2011
  1. C. Alboin, J. Jaffré, J.E. Roberts and C. Serres, Modeling fractures as interfaces for flow and transport in porous media, in Fluid flow and transport in porous media : mathematical and numerical treatment (South Hadley, MA, 2001), Contemp. Math., Amer. Math. Soc. 295 (2002) 13–24. [Google Scholar]
  2. P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM : M2AN 43 (2009) 239–275. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  3. T. Arbogast, L.C. Cowsar, M.F. Wheeler and I. Yotov, Mixed finite element methods on nonmatching multiblock grids. SIAM J. Numer. Anal. 37 (2000) 1295–1315 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  4. D.N. Arnold, R.S. Falk and R. Winther, Preconditioning in H(div) and applications. Math. Comp. 66 (1997) 957–984. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Becker, P. Hansbo and R. Stenberg, A finite element method for domain decomposition with non-matching grids. ESAIM : M2AN 37 (2003) 209–225. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. R. Becker, E. Burman and P. Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput. Methods Appl. Mech. Eng. 198 (2009) 3352–3360. [CrossRef] [MathSciNet] [Google Scholar]
  7. I.I. Bogdanov, V.V. Mourzenko, J.-F. Thovert and P.M. Adler, Two-phase flow through fractured porous media. Phys. Rev. E 68 (2003) 026703. [CrossRef] [Google Scholar]
  8. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, Springer-Verlag, New York 15 (1991). [Google Scholar]
  9. E. Burman and P. Hansbo, A unified stabilized method for Stokes’ and Darcy’s equations. J. Comput. Appl. Math. 198 (2007) 35–51. [CrossRef] [MathSciNet] [Google Scholar]
  10. C. D’Angelo and P. Zunino, A finite element method based on weighted interior penalties for heterogeneous incompressible flows. SIAM J. Numer. Anal. 47 (2009) 3990–4020. [CrossRef] [MathSciNet] [Google Scholar]
  11. C. D’Angelo and P. Zunino, Robust numerical approximation of coupled stokes and darcy flows applied to vascular hemodynamics and biochemical transport. ESAIM : M2AN 45 (2011) 447–476. [CrossRef] [EDP Sciences] [Google Scholar]
  12. N. Frih, J.E. Roberts and A. Saada, Modeling fractures as interfaces : a model for Forchheimer fractures. Comput. Geosci. 12 (2008) 91–104. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, Springer-Verlag, Berlin 5 (1986). [Google Scholar]
  14. A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 5537–5552. [CrossRef] [MathSciNet] [Google Scholar]
  15. V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  16. N. Moës, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing. Internat. J. Numer. Methods Eng. 46 (1999) 131–150. [CrossRef] [Google Scholar]
  17. C.E. Powell and D. Silvester, Optimal preconditioning for Raviart–Thomas mixed formulation of second-order elliptic problems. SIAM J. Matrix Anal. Appl. 25 (2003) 718–738 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Quarteroni and A. Valli, Numerical Aproximation of Partial Differential Equations. Springer (1994). [Google Scholar]
  19. A. Reusken, Analysis of an extended pressure finite element space for two-phase incompressible flows. Comput. Vis. Sci. 11 (2008) 293–305. [CrossRef] [MathSciNet] [Google Scholar]
  20. P. Zunino, L. Cattaneo and C.M. Colciago, An unfitted interface penalty method for the numerical approximation of contrast problems. Appl. Num. Math. 61 (2011) 1059–1076. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you