Free Access
Issue
ESAIM: M2AN
Volume 46, Number 4, July-August 2012
Page(s) 681 - 707
DOI https://doi.org/10.1051/m2an/2011047
Published online 03 February 2012
  1. U.M. Ascher, S.J. Ruuth and R.J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Special issue on time integration (Amsterdam, 1996). Appl. Numer. Math. 25 (1997) 151–167. [CrossRef] [MathSciNet] [Google Scholar]
  2. U.M. Ascher, S.J. Ruuth and B.T.R. Wetton, Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32 (1995) 797–823. [CrossRef] [Google Scholar]
  3. M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg. 196 (2007) 853–866. [CrossRef] [MathSciNet] [Google Scholar]
  4. A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. FENOMECH’81, Part I, Stuttgart (1981). Comput. Methods Appl. Mech. Engrg. 32 (1982) 199–259. [CrossRef] [MathSciNet] [Google Scholar]
  5. E. Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43 (2005) 2012–2033 (electronic). [CrossRef] [Google Scholar]
  6. E. Burman, Consistent SUPG-method for transient transport problems : Stability and convergence. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1114–1123. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Burman and A. Ern, A continuous finite element method with face penalty to approximate Friedrichs’ systems. ESAIM : M2AN41 (2007) 55–76. [Google Scholar]
  8. E. Burman, A. Ern and M.A. Fernández, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems. SIAM J. Numer. Anal. 48 (2010) 2019–2042. [CrossRef] [Google Scholar]
  9. E. Burman and M.A. Fernández, Finite element methods with symmetric stabilization for the transient convection-diffusion-reaction equation. Comput. Methods Appl. Mech. Engrg. 198 (2009) 2508–2519. [CrossRef] [MathSciNet] [Google Scholar]
  10. E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Engrg. 193 (2004) 1437–1453. [CrossRef] [MathSciNet] [Google Scholar]
  11. E. Burman and G. Smith, Analysis of the space semi-discretized SUPG method for transient convection-diffusion equations. Technical report, University of Sussex (2010). [Google Scholar]
  12. E. Burman, J. Guzmán and D. Leykekhman, Weighted error estimates of the continuous interior penalty method for singularly perturbed problems. IMA J. Numer. Anal. 29 (2009) 284–314. [CrossRef] [Google Scholar]
  13. B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52 (1989) 411–435. [Google Scholar]
  14. R. Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4295–4321. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35 (1980) 257–276. [CrossRef] [Google Scholar]
  16. D.A. Di Pietro, A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection, SIAM J. Numer. Anal. 46 (2008) 805–831. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159 (2004). [Google Scholar]
  18. A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal. 44 (2006) 753–778. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.-L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling. ESAIM : M2AN 33 (1999) 1293–1316. [CrossRef] [EDP Sciences] [Google Scholar]
  20. J.-L. Guermond, Subgrid stabilization of Galerkin approximations of linear monotone operators. IMA J. Numer. Anal. 21 (2001) 165–197. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Guzmán, Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems. J. Numer. Math. 14 (2006) 41–56. [CrossRef] [Google Scholar]
  22. F. Hecht, O. Pironneau, A. Le Hyaric and J. Morice, FreeFEM++, Version 3.14-0. http://www.freefem.org/ff++/. [Google Scholar]
  23. C. Johnson, U. Nävert and J. Pitkäranta, Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 45 (1984) 285–312. [CrossRef] [MathSciNet] [Google Scholar]
  24. C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp. 46 (1986) 1–26. [CrossRef] [MathSciNet] [Google Scholar]
  25. P. Lesaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, in Mathematical aspects of Finite Elements in Partial Differential Equations, edited by C. de Boors. Academic Press (1974) 89–123. [Google Scholar]
  26. D. Levy and E. Tadmor, From semidiscrete to fully discrete : stability of Runge–Kutta schemes by the energy method. SIAM Rev. 40 (1998) 40–73 (electronic). [CrossRef] [Google Scholar]
  27. L. Pareschi and G. Russo, Implicit-explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25 (2005) 129–155. [Google Scholar]
  28. H.-G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations, Convection-diffusion-reaction and flow problems. Springer Series in Computational Mathematics, 2nd edition. Springer-Verlag, Berlin 24 (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you