Free Access
Volume 46, Number 4, July-August 2012
Page(s) 681 - 707
Published online 03 February 2012
  1. U.M. Ascher, S.J. Ruuth and R.J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Special issue on time integration (Amsterdam, 1996). Appl. Numer. Math. 25 (1997) 151–167. [CrossRef] [MathSciNet]
  2. U.M. Ascher, S.J. Ruuth and B.T.R. Wetton, Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32 (1995) 797–823. [CrossRef]
  3. M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg. 196 (2007) 853–866. [CrossRef] [MathSciNet]
  4. A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. FENOMECH’81, Part I, Stuttgart (1981). Comput. Methods Appl. Mech. Engrg. 32 (1982) 199–259. [CrossRef] [MathSciNet]
  5. E. Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43 (2005) 2012–2033 (electronic). [CrossRef]
  6. E. Burman, Consistent SUPG-method for transient transport problems : Stability and convergence. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1114–1123. [CrossRef] [MathSciNet]
  7. E. Burman and A. Ern, A continuous finite element method with face penalty to approximate Friedrichs’ systems. ESAIM : M2AN41 (2007) 55–76.
  8. E. Burman, A. Ern and M.A. Fernández, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems. SIAM J. Numer. Anal. 48 (2010) 2019–2042. [CrossRef]
  9. E. Burman and M.A. Fernández, Finite element methods with symmetric stabilization for the transient convection-diffusion-reaction equation. Comput. Methods Appl. Mech. Engrg. 198 (2009) 2508–2519. [CrossRef] [MathSciNet]
  10. E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Engrg. 193 (2004) 1437–1453. [CrossRef] [MathSciNet]
  11. E. Burman and G. Smith, Analysis of the space semi-discretized SUPG method for transient convection-diffusion equations. Technical report, University of Sussex (2010).
  12. E. Burman, J. Guzmán and D. Leykekhman, Weighted error estimates of the continuous interior penalty method for singularly perturbed problems. IMA J. Numer. Anal. 29 (2009) 284–314. [CrossRef]
  13. B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52 (1989) 411–435.
  14. R. Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4295–4321. [CrossRef] [MathSciNet]
  15. M. Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35 (1980) 257–276. [CrossRef]
  16. D.A. Di Pietro, A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection, SIAM J. Numer. Anal. 46 (2008) 805–831. [CrossRef] [MathSciNet]
  17. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159 (2004).
  18. A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal. 44 (2006) 753–778. [CrossRef] [MathSciNet]
  19. J.-L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling. ESAIM : M2AN 33 (1999) 1293–1316. [CrossRef] [EDP Sciences]
  20. J.-L. Guermond, Subgrid stabilization of Galerkin approximations of linear monotone operators. IMA J. Numer. Anal. 21 (2001) 165–197. [CrossRef] [MathSciNet]
  21. J. Guzmán, Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems. J. Numer. Math. 14 (2006) 41–56. [CrossRef]
  22. F. Hecht, O. Pironneau, A. Le Hyaric and J. Morice, FreeFEM++, Version 3.14-0.
  23. C. Johnson, U. Nävert and J. Pitkäranta, Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 45 (1984) 285–312. [CrossRef] [MathSciNet]
  24. C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp. 46 (1986) 1–26. [CrossRef] [MathSciNet]
  25. P. Lesaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, in Mathematical aspects of Finite Elements in Partial Differential Equations, edited by C. de Boors. Academic Press (1974) 89–123.
  26. D. Levy and E. Tadmor, From semidiscrete to fully discrete : stability of Runge–Kutta schemes by the energy method. SIAM Rev. 40 (1998) 40–73 (electronic). [CrossRef]
  27. L. Pareschi and G. Russo, Implicit-explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25 (2005) 129–155.
  28. H.-G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations, Convection-diffusion-reaction and flow problems. Springer Series in Computational Mathematics, 2nd edition. Springer-Verlag, Berlin 24 (2008).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you