Free Access
Issue
ESAIM: M2AN
Volume 46, Number 4, July-August 2012
Page(s) 709 - 729
DOI https://doi.org/10.1051/m2an/2011052
Published online 03 February 2012
  1. A. Alonso and A. Valli, Eddy Current Approximation of Maxwell Equations : Theory, Algorithms and Applications. Springer (2010). [Google Scholar]
  2. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. [CrossRef] [MathSciNet] [Google Scholar]
  3. O. Bodart, A.V. Boureau and R. Touzani, Numerical investigation of optimal control of induction heating processes. Appl. Math. Modelling 25 (2001) 697–712. [CrossRef] [Google Scholar]
  4. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer-Verlag, New York (2000). [Google Scholar]
  5. A. Bossavit and J.-F. Rodrigues, On the electromagnetic induction heating problem in bounded domains. Adv. Math. Sci. Appl. 4 (1994) 79–92. [Google Scholar]
  6. E. Casas, Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297–1327. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Clain and R. Touzani, A two-dimensional stationary induction heating problem. Math. Methods Appl. Sci. 20 (1997) 759–766. [CrossRef] [Google Scholar]
  8. S. Clain, J. Rappaz, M. Swierkosz and R. Touzani, Numerical modelling of induction heating for two-dimensional geometries. Math. Models Methods Appl. Sci. 3 (1993) 805–7822. [Google Scholar]
  9. P.-E. Druet, O. Klein, J. Sprekels, F. Tröltzsch and I. Yousept, Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects. SIAM J. Control Optim. 49 (2011) 1707–1736. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.A. Griepentrog, Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces. Adv. Differ. Equ. 12 (2007) 1031–1078. [Google Scholar]
  11. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). [Google Scholar]
  12. D. Hömberg, Induction hardening of steel – modeling, analysis and optimal design of inductors. Habilitation thesis, TU Berlin (2001). [Google Scholar]
  13. D. Hömberg, A mathematical model for induction hardening including mechanical effects. Nonlin. Anal. Real World Appl. 5 (2004) 55–90. [CrossRef] [Google Scholar]
  14. J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, Paris 1–3 (1968). [Google Scholar]
  15. A.C. Metaxas, Foundations of Electroheat : A Unified Approach. Wiley (1996). [Google Scholar]
  16. P. Monk, Finite element methods for Maxwell’s equations. Clarendon press, Oxford (2003). [Google Scholar]
  17. J.C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Nocedal and S.J. Wright, Numerical Optimization. Springer-Verlag, New York (1999). [Google Scholar]
  19. C. Parietti and J. Rappaz, A quasi-static two-dimensional induction heating problem. I : Modelling and analysis. Math. Models Methods Appl. Sci. 8 (1998) 1003–1021. [Google Scholar]
  20. C. Parietti and J. Rappaz, A quasi-static two-dimensional induction heating problem II. numerical analysis. Math. Models Methods Appl. Sci. 9 (1999) 1333–1350. [Google Scholar]
  21. J. Rappaz and M. Swierkosz, Mathematical modelling and numerical simulation of induction heating processes. Appl. Math. Comput. Sci. 6 (1996) 207–221. [Google Scholar]
  22. F. Tröltzsch, Optimal control of partial differential equations, Graduate Studies in Mathematics. American Mathematical Society, Providence, RI 112 (2010). [Google Scholar]
  23. D. Wachsmuth and A. Rösch, How to check numerically the sufficient optimality conditions for infinite-dimensional optimization problems, in Optimal control of coupled systems of partial differential equations, Internat. Ser. Numer. Math. Birkhäuser Verlag, Basel 158 (2009) 297–317. [Google Scholar]
  24. I. Yousept, Optimal control of a nonlinear coupled electromagnetic induction heating system with pointwise state constraints. Mathematics and its Applications/Annals of AOSR 2 (2010) 45–77. [Google Scholar]
  25. I. Yousept, Optimal control of Maxwell’s equations with regularized state constraints. Comput. Optim. Appl. (2011) DOI: 10.1007/s10589-011-9422-2. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you