Free Access
Issue
ESAIM: M2AN
Volume 46, Number 4, July-August 2012
Page(s) 731 - 757
DOI https://doi.org/10.1051/m2an/2011053
Published online 03 February 2012
  1. D. Amsallem and C. Farhat, Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46 (2008) 1803–1813. [CrossRef] [Google Scholar]
  2. A. Astolfi, Model reduction by moment matching for linear and nonlinear systems. IEEE Trans. Automat. Cont. 55 (2010) 2321–2336. [CrossRef] [Google Scholar]
  3. K.J. Bathe, Finite Element Procedures. Prentice Hall (1996). [Google Scholar]
  4. R. Chabiniok, D. Chapelle, P.-F. Lesault, A. Rahmouni and J.-F. Deux, Validation of a biomechanical heart model using animal data with acute myocardial infarction, in MICCAI Workshop on Cardiovascular Interventional Imaging and Biophysical Modelling (CI2BM09) (2009). [Google Scholar]
  5. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland (1987). [Google Scholar]
  6. P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 8 (1975) 77–84. [Google Scholar]
  7. L. Daniel, C.S. Ong, S.C. Low, H.L. Lee and J. White, A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.23 (2004) 678–693. [Google Scholar]
  8. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology 5 (1992). [Google Scholar]
  9. B.F. Feeny and R. Kappagantu, On the physical interpretation of proper orthogonal modes in vibrations. J. Sound Vib. 211 (1998) 607–616. [CrossRef] [Google Scholar]
  10. T.M. Flett, Differential Analysis. Cambridge University Press (1980). [Google Scholar]
  11. S. Gugercin and A.C. Athanasios, A survey of model reduction by balanced truncation and some new results. Int. J. Control 77 (2004) 748–766. [CrossRef] [Google Scholar]
  12. M. Hinze and S. Volkwein, Proper orthogonal decomposition surrogate models for nonlinear dynamical systems : Error estimates and suboptimal control, inDimension Reduction of Large-Scale Systems, edited by T.J. Barth, M. Griebel, D.E. Keyes, R.M. Nieminen, D. Roose, T. Schlick, P. Benner, D.C. Sorensen and V. Mehrmann. Lect. Notes Comput. Sci. Eng. 45 (2005) 261–306. [Google Scholar]
  13. M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl. 39 (2008) 319–345. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Holmes, J. Lumley and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996). [Google Scholar]
  15. M. Kahlbacher and S. Volkwein, Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems. Discussiones Mathematicae : Differential Inclusions, Control and Optimization 27 (2007) 95–117. [Google Scholar]
  16. D.-D. Kosambi, Statistics in function space, J. Indian Math. Soc. (N.S.) 7 (1943) 76–88. [Google Scholar]
  17. K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90 (2001) 117–148. [CrossRef] [MathSciNet] [Google Scholar]
  18. K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40 (2002) 492–515 (electronic). [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. K. Kunisch and S. Volkwein, Proper orthogonal decomposition for optimality systems. ESAIM : M2AN 42 (2008) 1–23. [CrossRef] [EDP Sciences] [Google Scholar]
  20. Y. Maday, A.T. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J. Sci. Comput. 17 (2002) 437–446. [CrossRef] [MathSciNet] [Google Scholar]
  21. C. Prud’homme, D.V. Rovas, K. Veroy and A.T. Patera, A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations. ESAIM : M2AN 36 (2002) 747–771. Programming. [CrossRef] [EDP Sciences] [Google Scholar]
  22. P.-A. Raviart and J.-M. Thomas, Introduction à l’Analyse Numérique des Equations aux Dérivées Partielles. Collection Mathématiques Appliquées pour la Maîtrise (in French), Masson (1983). [Google Scholar]
  23. D.V. Rovas, L. Machiels and Y. Maday, Reduced-basis output bound methods for parabolic problems. IMA J. Numer. Anal. 26 (2006) 423–445. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations : application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15 (2008) 229–275. [CrossRef] [MathSciNet] [Google Scholar]
  25. J. Sainte-Marie, D. Chapelle, R. Cimrman and M. Sorine, Modeling and estimation of the cardiac electromechanical activity. Comput. Struct. 84 (2006) 1743–1759. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  26. T. Stykel, Balanced truncation model reduction for semidiscretized Stokes equation. Linear Algebra Appl. 415 (2006) 262–289. [CrossRef] [Google Scholar]
  27. K. Veroy, C. Prud’homme and A.T. Patera, Reduced-basis approximation of the viscous Burgers equation : rigorous a posteriori error bounds. C. R. Math. Acad. Sci. Paris 337 (2003) 619–624. [CrossRef] [MathSciNet] [Google Scholar]
  28. K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40 (2002) 2323–2330. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you