Free Access
Issue
ESAIM: M2AN
Volume 46, Number 4, July-August 2012
Page(s) 759 - 796
DOI https://doi.org/10.1051/m2an/2011064
Published online 03 February 2012
  1. J.E. Aarnes, S. Krogstad and K.-A. Lie, A hierarchical multiscale method for two-phase flow based on mixed finite elements and nonuniform coarse grids. Multiscale Model. Simul. 5 (2006) 337–363. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. J.E. Aarnes, Y. Efendiev and L. Jiang, Mixed multiscale finite element methods using limited global information. Multiscale Model. Simul. 7 (2008) 655–676. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6 (2002) 405–432. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. I. Aavatsmark, T. Barkve, Ø. Bøe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods. SIAM J. Sci. Comput. 19 (1998) 1700–1716. [CrossRef] [MathSciNet] [Google Scholar]
  5. I. Aavastsmark, G.T. Eigestad, R.A. Klausen, M.F. Wheeler and I. Yotov, Convergence of a symmetric MPFA method on quadrilateral grids. Comput. Geosci. 11 (2007) 333–345. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. I. Aavatsmark, G.T. Elgestad, B.T. Mallison and J.M. Nordbotten, A compact multipoint flux approximation method with improved robustness. Numer. Methods for Partial Differential Equations 24 (2008) 1329–1360. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Agélas, D.A. Di Pietro and J. Droniou, The G method for heterogeneous anisotropic diffusion on general meshes. Math. Model. Numer. Anal. 44 (2010) 597–625. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  8. T. Arbogast, Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems. SIAM. J. Numer. Anal. 42 (2004) 576–598. [CrossRef] [MathSciNet] [Google Scholar]
  9. T. Arbogast, M.F. Wheeler and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34 (1997) 828–852. [CrossRef] [MathSciNet] [Google Scholar]
  10. T. Arbogast, C.N. Dawson, P.T. Keenan, M.F. Wheeler and I. Yotov, Enhanced cell-centered finite differences for elliptic equations on general geometry. SIAM J. Sci. Comput. 19 (1998) 404–425. [CrossRef] [MathSciNet] [Google Scholar]
  11. T. Arbogast, L.C. Cowsar, M.F. Wheeler and I. Yotov, Mixed finite element methods on nonmatching multiblock grids. SIAM J. Numer. Anal. 37 (2000) 1295–1315. [CrossRef] [MathSciNet] [Google Scholar]
  12. T. Arbogast, G. Pencheva, M.F. Wheeler and I. Yotov, A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6 (2007) 319–346. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates. RAIRO Modèl. Math. Anal. Numèr. 19 (1985) 7–32. [MathSciNet] [Google Scholar]
  14. D.N. Arnold, D. Boffi and R.S. Falk, Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42 (2005) 2429–2451. [CrossRef] [MathSciNet] [Google Scholar]
  15. J. Baranger, J.F. Maitre and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO Modèl. Math. Anal. Numèr. 30 (1996) 445–465. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  16. C. Bernardi, Y. Maday and A.T. Patera. A new nonconforming approach to domain decomposition : The mortar element method, in Nonlinear Partial Differential Equations and Their Applications, edited by H. Brezis and J.L. Lions. Longman Scientific and Technical, Harlow, UK (1994). [Google Scholar]
  17. M. Berndt, K. Lipnikov, M. Shashkov, M.F. Wheeler and I. Yotov, Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. SIAM. J. Numer. Anal. 43 (2005) 1728–1749. [CrossRef] [MathSciNet] [Google Scholar]
  18. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, Springer-Verlag (2007). [Google Scholar]
  19. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). [Google Scholar]
  20. F. Brezzi, J. Douglas and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. [CrossRef] [MathSciNet] [Google Scholar]
  21. F. Brezzi, J. Douglas, R. Duran and M. Fortin, Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51 (1987) 237–250. [CrossRef] [MathSciNet] [Google Scholar]
  22. F. Brezzi, M. Fortin and L.D. Marini, Error analysis of piecewise constant pressure approximations of Darcy’s law. Comput. Methods Appl. Mech. Engrg. 195 (2006) 1547–1559. [CrossRef] [MathSciNet] [Google Scholar]
  23. Z. Cai, J.E. Jones, S.F. McCormick and T.F. Russell, Control-volume mixed finite element methods. Comput. Geosci. 1 (1997) 289–315 (1998). [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  24. Z. Chen and T.Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comp. 72 (2003) 541–576. [CrossRef] [MathSciNet] [Google Scholar]
  25. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Stud. Math. Appl. 4. North-Holland, Amsterdam (1978); reprinted, SIAM, Philadelphia (2002). [Google Scholar]
  26. R. Duran, Superconvergence for rectangular mixed finite elements. Numer. Math. 58 (1990) 287–298. [CrossRef] [MathSciNet] [Google Scholar]
  27. M.G. Edwards, Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids. Comput. Geosci. 6 (2002) 433–452. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  28. M.G. Edwards and C.F. Rogers, Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2 (1998) 259–290 (1999). [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  29. R.E. Ewing, M.M. Liu and J. Wang, Superconvergence of mixed finite element approximations over quadrilaterals. SIAM. J. Numer. Anal. 36 (1999) 772–787. [CrossRef] [MathSciNet] [Google Scholar]
  30. R. Eymard, T. Gallouet and R. Herbin, Finite volume methods. in Handbook of Numerical Analysis. North-Holland, Amsterdam (2000) 713–1020. [Google Scholar]
  31. G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations I. Linearized steady problems, Springer-Verlag, New York (1994) [Google Scholar]
  32. B. Ganis and I. Yotov, Implementation of a mortar mixed finite element using a multiscale flux basis. Comput. Methods Appl. Mech. Engrg. 198 (2009) 3989–3998. [CrossRef] [MathSciNet] [Google Scholar]
  33. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). [Google Scholar]
  34. R. Glowinski and M.F. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, edited by R. Glowinski, G.H. Golub, G.A. Meurant and J. Periaux. SIAM, Philadelphia (1988) 144–172. [Google Scholar]
  35. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA (1995). [Google Scholar]
  36. T.Y. Hou and X.H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [CrossRef] [MathSciNet] [Google Scholar]
  37. T.J.R. Hughes, G.R. Feijoo, L. Mazzei and J.-B. Quincy, The variational multiscale method–a paradim for computational mechanics. Comput. Methods Appl. Mech. Engrg. 166 (1998) 3–24. [CrossRef] [MathSciNet] [Google Scholar]
  38. J. Hyman, M. Shashkov and S. Steinberg, The numerical solution of diffusion problem in strongly heterogeneous non-isotropic materials. J. Comput. Phys. 132 (1997) 130–148. [CrossRef] [MathSciNet] [Google Scholar]
  39. R. Ingram, M.F. Wheeler and I. Yotov, A multipoint flux mixed finite element method on hexahedra. SIAM J. Numer. Anal. 48 (2010) 1281–1312. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  40. P. Jenny, S.H. Lee and H.A. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187 (2003) 47–67. [CrossRef] [Google Scholar]
  41. R.A. Klausen and R. Winther, Robust convergence of multi point flux approximation on rough grids. Numer. Math. 104 (2006) 317–337. [CrossRef] [MathSciNet] [Google Scholar]
  42. R.A. Klausen and R. Winther, Convergence of multipoint flux approximations on quadrilateral grids. Numer. Methods Partial Differential Equations 22 (2006) 1438–1454. [CrossRef] [MathSciNet] [Google Scholar]
  43. J.L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Springer-Verlag, Berlin, Heidelberg, New York (1972). [Google Scholar]
  44. K. Lipnikov, M. Shashkov and I. Yotov, Local flux mimetic finite difference methods. Numer. Math. 112 (2009) 115–152. [CrossRef] [MathSciNet] [Google Scholar]
  45. T.P. Mathew, Domain Decomposition and Iterative Methods for Mixed Finite Element Discretizations of Elliptic Problems. Tech. Report 463, Courant Institute of Mathematical Sciences, New York University, New York (1989). [Google Scholar]
  46. J.C. Nedelec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet] [Google Scholar]
  47. G. Pencheva and I. Yotov, Balancing domain decomposition for mortar mixed finite element methods on non-matching grids. Numer. Linear Algebra Appl. 10 (2003) 159–180. [CrossRef] [MathSciNet] [Google Scholar]
  48. P.A. Raviart and J. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Mathematical aspects of the Finite Elements Method, Lect. Notes Math. 606 (1977) 292–315. [CrossRef] [Google Scholar]
  49. J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis II, edited by P.G. Ciarlet and J.L. Lions. Elsevier Science Publishers B.V. (1991) 523–639. [Google Scholar]
  50. T.F. Russell and M.F. Wheeler, Finite element and finite difference methods for continuous flows in porous media, in The Mathematics of Reservoir Simulation, edited by R.E. Ewing. SIAM, Philadelphia (1983) 35–106. [Google Scholar]
  51. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  52. J.M. Thomas, These de Doctorat d’etat, Sur l’analyse numérique des méthodes d’éléments finis hybrides et mixtes. Ph.D. thesis, à l’Université Pierre et Marie Curie (1977). [Google Scholar]
  53. M. Vohralík, Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. ESAIM :M2AN 40 (2006) 367–391. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  54. J. Wang and T.P. Mathew, Mixed finite element method over quadrilaterals, in Conference on Advances in Numerical Methods and Applications, edited by I.T. Dimov, B. Sendov and P. Vassilevski. World Scientific, River Edge, NJ (1994) 351–375. [Google Scholar]
  55. A. Weiser and M.F. Wheeler, On convergence of block-centered finite differences for elliptic problems. SIAM J. Numer. Anal. 25 (1988) 351–375. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  56. M.F. Wheeler and I. Yotov, A multipoint flux mixed finite element method. SIAM. J. Numer. Anal. 44 (2006) 2082–2106. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  57. M.F. Wheeler, G. Xue and I. Yotov, A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra. Accepted by Numer. Math. (2011). [Google Scholar]
  58. A. Younès, P. Ackerer and G. Chavent, From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions. Internat. J. Numer. Methods Engrg. 59 (2004) 365–388. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you