Free Access
Volume 46, Number 5, September-October 2012
Page(s) 1225 - 1246
Published online 27 March 2012
  1. M.A. Botchev and J.G. Verwer, Numerical integration of damped maxwell equations. SIAM J. Sci. Comput. 31 (2009) 1322–1346. [CrossRef]
  2. A. Buffa and I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44 (2006) 2198–2226. [CrossRef] [MathSciNet]
  3. A. Catella, V. Dolean and S. Lanteri, An unconditionally stable discontinuous galerkin method for solving the 2-D time-domain Maxwell equations on unstructured triangular meshes. IEEE Trans. Magn. 44 (2008) 1250–1253. [CrossRef]
  4. B. Cockburn, G.E.G.E. Karniadakis and C.-W. Shu Eds., Discontinuous Galerkin methods. Theory, computation and applications. Springer-Verlag, Berlin (2000)
  5. G. Cohen, X. Ferrieres and S. Pernet, A spatial high order hexahedral discontinuous Galerkin method to solve Maxwell’s equations in time-domain. J. Comput. Phys. 217 (2006) 340–363. [CrossRef] [MathSciNet]
  6. J. Diaz and M.J. Grote, Energy conserving explicit local time-stepping for second-order wave equations. SIAM J. Sci. Comput. 31 (2009) 1985–2014. [CrossRef]
  7. V. Dolean, H. Fahs, L. Fezoui and S. Lanteri, Locally implicit discontinuous Galerkin method for time domain electromagnetics. J. Comput. Phys. 229 (2010) 512–526. [CrossRef] [MathSciNet]
  8. H. Fahs, Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation. Int. J. Numer. Anal. Mod. 6 (2009) 193–216.
  9. I. Faragó, Á. Havasi and Z. Zlatev, Richardson-extrapolated sequential splitting and its application. J. Comput. Appl. Math. 234 (2010) 3283–3302. [CrossRef] [MathSciNet]
  10. L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM : M2AN 39 (2005) 1149–1176. [CrossRef] [EDP Sciences]
  11. M.J. Grote and T. Mitkova, Explicit local time stepping methods for Maxwell’s equations. J. Comput. Appl. Math. 234 (2010) 3283–3302. [CrossRef] [MathSciNet]
  12. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II – Stiff and Differential-Algebraic problems, 2nd edition. Springer-Verlag, Berlin (1996).
  13. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, 2nd edition. Springer-Verlag, Berlin (2002).
  14. J. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181 (2002) 186–221. [CrossRef] [MathSciNet]
  15. J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods. Springer (2008).
  16. W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer-Verlag, Berlin (2003).
  17. J. Jin, The Finite Element Method in Electromagnetics, 2nd edition. Wiley-IEEE Press (2002).
  18. G.Yu. Kulikov, Local theory of extrapolation methods. Numer. Algorithm 53 (2010) 321-342 [CrossRef]
  19. R.I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16 (1995) 151–168. [CrossRef] [MathSciNet]
  20. E. Montseny, S. Pernet, X. Ferrires and G. Cohen, Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell’s equations. J. Comput. Phys. 227 (2008) 6795–6820. [CrossRef] [MathSciNet]
  21. J.C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet]
  22. J.C. Nédélec, A new dfamily of mixed finite elements in R3. Numer. Math. 50 (1986) 57–81. [CrossRef] [MathSciNet]
  23. S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problem. ESAIM : M2AN 40 (2006) 815–841. [CrossRef] [EDP Sciences]
  24. M. Remaki, A new finite volume scheme for solving Maxwell’s system. Compel 19 (2000) 913-931.
  25. M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte-Carlo simulations. Phys. Lett. A 146 (1990) 319–323. [CrossRef] [MathSciNet]
  26. A. Taube, M. Dumbser, C.D. Munz and R. Schneider, A high order discontinuous Galerkin method with local time stepping for the Maxwell equations. Int. J. Numer. Model. 22 (2009) 77–103. [CrossRef]
  27. J.G. Verwer, Component splitting for semi-discrete Maxwell equations. BIT Numer. Math. 51 (2011) 427–445.
  28. J.G Verwer, Composition methods, Maxwell’s and source term. CWI Technical report (2010); Available at
  29. J.G. Verwer and M.A. Botchev, Unconditionaly stable integration of Maxwell’s equations. Linear Algebra Appl. 431 (2009) 300–317. [CrossRef] [MathSciNet]
  30. J.G. Verwer and H.B. de Vries, Global extrapolation of a first order splitting method. SIAM J. Sci. Stat. Comput. 6 (1985) 771–780. [CrossRef]
  31. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1966) 302–307. [NASA ADS] [CrossRef]
  32. H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262–268. [NASA ADS] [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you