Free Access
Issue
ESAIM: M2AN
Volume 46, Number 5, September-October 2012
Page(s) 1225 - 1246
DOI https://doi.org/10.1051/m2an/2012002
Published online 27 March 2012
  1. M.A. Botchev and J.G. Verwer, Numerical integration of damped maxwell equations. SIAM J. Sci. Comput. 31 (2009) 1322–1346. [CrossRef] [Google Scholar]
  2. A. Buffa and I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44 (2006) 2198–2226. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Catella, V. Dolean and S. Lanteri, An unconditionally stable discontinuous galerkin method for solving the 2-D time-domain Maxwell equations on unstructured triangular meshes. IEEE Trans. Magn. 44 (2008) 1250–1253. [CrossRef] [Google Scholar]
  4. B. Cockburn, G.E.G.E. Karniadakis and C.-W. Shu Eds., Discontinuous Galerkin methods. Theory, computation and applications. Springer-Verlag, Berlin (2000) [Google Scholar]
  5. G. Cohen, X. Ferrieres and S. Pernet, A spatial high order hexahedral discontinuous Galerkin method to solve Maxwell’s equations in time-domain. J. Comput. Phys. 217 (2006) 340–363. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Diaz and M.J. Grote, Energy conserving explicit local time-stepping for second-order wave equations. SIAM J. Sci. Comput. 31 (2009) 1985–2014. [CrossRef] [Google Scholar]
  7. V. Dolean, H. Fahs, L. Fezoui and S. Lanteri, Locally implicit discontinuous Galerkin method for time domain electromagnetics. J. Comput. Phys. 229 (2010) 512–526. [CrossRef] [MathSciNet] [Google Scholar]
  8. H. Fahs, Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation. Int. J. Numer. Anal. Mod. 6 (2009) 193–216. [Google Scholar]
  9. I. Faragó, Á. Havasi and Z. Zlatev, Richardson-extrapolated sequential splitting and its application. J. Comput. Appl. Math. 234 (2010) 3283–3302. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM : M2AN 39 (2005) 1149–1176. [CrossRef] [EDP Sciences] [Google Scholar]
  11. M.J. Grote and T. Mitkova, Explicit local time stepping methods for Maxwell’s equations. J. Comput. Appl. Math. 234 (2010) 3283–3302. [CrossRef] [MathSciNet] [Google Scholar]
  12. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II – Stiff and Differential-Algebraic problems, 2nd edition. Springer-Verlag, Berlin (1996). [Google Scholar]
  13. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, 2nd edition. Springer-Verlag, Berlin (2002). [Google Scholar]
  14. J. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181 (2002) 186–221. [CrossRef] [MathSciNet] [Google Scholar]
  15. J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods. Springer (2008). [Google Scholar]
  16. W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer-Verlag, Berlin (2003). [Google Scholar]
  17. J. Jin, The Finite Element Method in Electromagnetics, 2nd edition. Wiley-IEEE Press (2002). [Google Scholar]
  18. G.Yu. Kulikov, Local theory of extrapolation methods. Numer. Algorithm 53 (2010) 321-342 [CrossRef] [Google Scholar]
  19. R.I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16 (1995) 151–168. [CrossRef] [MathSciNet] [Google Scholar]
  20. E. Montseny, S. Pernet, X. Ferrires and G. Cohen, Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell’s equations. J. Comput. Phys. 227 (2008) 6795–6820. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.C. Nédélec, A new dfamily of mixed finite elements in R3. Numer. Math. 50 (1986) 57–81. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problem. ESAIM : M2AN 40 (2006) 815–841. [CrossRef] [EDP Sciences] [Google Scholar]
  24. M. Remaki, A new finite volume scheme for solving Maxwell’s system. Compel 19 (2000) 913-931. [Google Scholar]
  25. M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte-Carlo simulations. Phys. Lett. A 146 (1990) 319–323. [CrossRef] [MathSciNet] [Google Scholar]
  26. A. Taube, M. Dumbser, C.D. Munz and R. Schneider, A high order discontinuous Galerkin method with local time stepping for the Maxwell equations. Int. J. Numer. Model. 22 (2009) 77–103. [CrossRef] [Google Scholar]
  27. J.G. Verwer, Component splitting for semi-discrete Maxwell equations. BIT Numer. Math. 51 (2011) 427–445. [Google Scholar]
  28. J.G Verwer, Composition methods, Maxwell’s and source term. CWI Technical report (2010); Available at http://oai.cwi.nl/oai/asset/17036/17036A.pdf. [Google Scholar]
  29. J.G. Verwer and M.A. Botchev, Unconditionaly stable integration of Maxwell’s equations. Linear Algebra Appl. 431 (2009) 300–317. [CrossRef] [MathSciNet] [Google Scholar]
  30. J.G. Verwer and H.B. de Vries, Global extrapolation of a first order splitting method. SIAM J. Sci. Stat. Comput. 6 (1985) 771–780. [CrossRef] [Google Scholar]
  31. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1966) 302–307. [NASA ADS] [CrossRef] [Google Scholar]
  32. H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262–268. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you