Free Access
Issue
ESAIM: M2AN
Volume 46, Number 6, November-December 2012
Page(s) 1363 - 1387
DOI https://doi.org/10.1051/m2an/2012006
Published online 11 April 2012
  1. A.-S. Bonnet-Ben Dhia, L. Chesnel and X. Claeys, Radiation condition for a non-smooth interface between a dielectric and a metamaterial [hal-00651008]. [Google Scholar]
  2. A.-S. Bonnet-Ben Dhia, P. Ciarlet Jr. and C.M. Zwölf, A new compactness result for electromagnetic waves. Application to the transmission problem between dielectrics and metamaterials. Math. Models Methods Appl. Sci. 18 (2008) 1605–1631. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  3. A.-S. Bonnet-Ben Dhia, P. Ciarlet Jr. and C.M. Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math. 234 (2010) 1912–1919; Corrigendum J. Comput. Appl. Math. 234 (2010) 2616. [CrossRef] [MathSciNet] [Google Scholar]
  4. A.-S. Bonnet-Ben Dhia, M. Dauge and K. Ramdani, Analyse spectrale et singularités d’un problème de transmission non coercif. C.R. Acad. Sci. Paris, Ser. I 328 (1999) 717–720. [CrossRef] [Google Scholar]
  5. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag (1991). [Google Scholar]
  6. L. Chesnel and P. Ciarlet Jr., Compact imbeddings in electromagnetism with interfaces between classical materials and meta-materials. SIAM J. Math. Anal. 43 (2011) 2150–2169. [CrossRef] [MathSciNet] [Google Scholar]
  7. X. Claeys, Analyse asymptotique et numérique de la diffraction d’ondes par des fils minces. Ph.D. thesis, Université Versailles – Saint-Quentin (2008) (in French). [Google Scholar]
  8. M. Costabel and E. Stephan, A direct boundary integral method for transmission problems. J. Math. Anal. Appl. 106 (1985) 367–413. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Dauge and B. Texier, Problèmes de transmission non coercifs dans des polygones. Technical Report 97–27, Université de Rennes 1, IRMAR, Campus de Beaulieu, 35042 Rennes Cedex, France (1997) http://hal.archives-ouvertes.fr/docs/00/56/23/29/PDF/BenjaminT˙arxiv.pdf (in French). [Google Scholar]
  10. L.D. Evans, Partial Differential Equations, Graduate studies in mathematics. Americain Mathematical Society 19 (1998). [Google Scholar]
  11. P. Fernandes and M. Raffetto, Well posedness and finite element approximability of time-harmonic electromagnetic boundary value problems involving bianisotropic materials and metamaterials. Math. Models Methods Appl. Sci. 19 (2009) 2299–2335. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  12. V.A. Kozlov, V.G. Maz’ya and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Mathematical Surveys and Monographs. Americain Mathematical Society 52 (1997). [Google Scholar]
  13. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod (1968). [Google Scholar]
  14. W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000). [Google Scholar]
  15. S.A. Nazarov and B.A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Expositions in Mathematics. De Gruyter 13 (1994). [Google Scholar]
  16. S. Nicaise and A.M. Sändig, General interface problems-I. Math. Meth. Appl. Sci. 17 (1994) 395–429. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Nicaise and A.M. Sändig, General interface problems-II. Math. Meth. Appl. Sci. 17 (1994) 431–450. [CrossRef] [Google Scholar]
  18. S. Nicaise and J. Venel, A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients. J. Comput. Appl. Math. 235 (2011) 4272–4282. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Oliveri and M. Raffetto, A warning about metamaterials for users of frequency-domain numerical simulators. IEEE Trans. Antennas Propag. 56 (2008) 792–798. [CrossRef] [Google Scholar]
  20. J. Peetre, Another approach to elliptic boundary problems. Commun. Pure Appl. Math. 14 (1961) 711–731. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Raffetto, Ill-posed waveguide discontinuity problem involving metamaterials with impedance boundary conditions on the two ports. IET Sci. Meas. Technol. 1 (2007) 232–239. [CrossRef] [Google Scholar]
  22. K. Ramdani, Lignes supraconductrices : analyse mathématique et numérique. Ph.D. thesis, Université Paris 6 (1999) (in French). [Google Scholar]
  23. A.A. Sukhorukov, I.V. Shadrivov and Y.S. Kivshar, Wave scattering by metamaterial wedges and interfaces. Int. J. Numer. Model. 19 (2006) 105–117. [CrossRef] [Google Scholar]
  24. H. Wallén, H. Kettunen and A. Sihvola, Surface modes of negative-parameter interfaces and the importance of rounding sharp corners. Metamaterials 2 (2008) 113–121. [CrossRef] [Google Scholar]
  25. J. Wloka, Partial Differ. Equ. Cambridge Univ. Press (1987). [Google Scholar]
  26. C.M. Zwölf, Méthodes variationnelles pour la modélisation des problèmes de transmission d’onde électromagnétique entre diélectrique et méta-matériau. Ph.D. thesis, Université Versailles, Saint-Quentin (2008) (in French). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you