Free Access
Issue |
ESAIM: M2AN
Volume 46, Number 6, November-December 2012
|
|
---|---|---|
Page(s) | 1389 - 1405 | |
DOI | https://doi.org/10.1051/m2an/2012007 | |
Published online | 11 April 2012 |
- M. Ainsworth, A posteriori error estimation for fully discrete hierarchic models of elliptic boundary value problems on thin domains. Numer. Math. 80 (1998) 325–362. [CrossRef] [MathSciNet] [Google Scholar]
- M. Ainsworth and A. Arnold, A reliable a posteriori error estimator for adaptive hierarchic modeling, in Adv. Adap. Comp. Meth. Mech., edited by P. Ladevéze and J.T. Oden (1998) 101–114. [Google Scholar]
- M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. Wiley (2000). [Google Scholar]
- I. Babuška and W.C. Rheinboldt, A posteriori error estimates for the finite element method. Int. J. Numer. Math. Eng. 12 (1978) 1597–1615. [CrossRef] [Google Scholar]
- I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. [CrossRef] [MathSciNet] [Google Scholar]
- I. Babuška and R. Rodríguez, The problem of the selection of an a posteriori error indicator based on smoothing techniques. Int. J. Numer. Methods Eng. 36 (1993) 539–567. [CrossRef] [Google Scholar]
- I. Babuška and C. Schwab, A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains. SIAM J. Numer. Anal. 33 (1996) 221–246. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. Amsterdam, North-Holland (1978). [Google Scholar]
- D. Braess, Finite elements : Theory, Fast Solvers and Application in Solid Mechanics. Cambridge University Press (2007). [Google Scholar]
- D. Braess, An a posteriori error estimate and a comparison theorem for the nonconforming P1 element. Calcolo 46 (2009) 149–155. [CrossRef] [MathSciNet] [Google Scholar]
- D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements. Math. Comp. 77 (2008) 651–672. [CrossRef] [MathSciNet] [Google Scholar]
- C. Carstensen and S. Sauter, A posteriori error analysis for elliptic PDEs on domains with complicated structures. Numer. Math. 96 (2004) 691–721. [CrossRef] [MathSciNet] [Google Scholar]
- M. Chipot, Elliptic Equations : An Introductory Course. Birkhäuser Verlag AG (2009). [Google Scholar]
- Ph. Clément, Approximations by finite element functions using local regularization. RAIRO Anal. Numer. 9 (1975) 77–84. [Google Scholar]
- W. Dörfler, M. Rumpf, An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation. Math. Comp. 67 1361–1382 (1998). [CrossRef] [MathSciNet] [Google Scholar]
- V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994). [Google Scholar]
- P. Jiranek, Z. Strakos and M. Vohralik, A posteriori error estimates including algebraic error : computable upper bounds and stopping criteria for iterative solvers, SIAM J. Sci. Comput. 32 (2010) 1567–1590. [CrossRef] [MathSciNet] [Google Scholar]
- P. Neittaanmäki and S.I. Repin, Reliable Methods for Computer Simulation. Error Control and A Posteriori Estimates. Elsevier, New York (2004). [Google Scholar]
- S. Repin, A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauch. Semin. (POMI) 243 (1997) 201–214. [Google Scholar]
- S. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp. 69 (2000) 481–500. [Google Scholar]
- S. Repin, Two-sided estimates of deviation from exact solutions of uniformly elliptic equations, Proc. of the St. Petersburg Mathematical Society IX, Amer. Math. Soc. Transl. Ser. 2. Amer. Math. Soc., Providence, RI 209 (2003) 143–171. [Google Scholar]
- S. Repin, A Posteriori Error Estimates For Partial Differential Equations. Walter de Gruyter, Berlin (2008). [Google Scholar]
- S. Repin and S. Sauter, Functional a posteriori estimates for the reaction-diffusion problem. C. R. Math. Acad. Sci. Paris 343 (2006) 349–354. [CrossRef] [MathSciNet] [Google Scholar]
- S. Repin and S. Sauter, Computable estimates of the modeling error related to Kirchhoff-Love plate model. Anal. Appl. 8 (2010) 1–20. [CrossRef] [Google Scholar]
- S. Repin and J. Valdman, Functional a posteriori error estimates for problems with nonlinear boundary conditions. J. Numer. Math. 16 (2008) 51–81. [CrossRef] [MathSciNet] [Google Scholar]
- S. Repin, S. Sauter and A. Smolianski, A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions. Computing 70 (2003) 205–233. [MathSciNet] [Google Scholar]
- S. Repin, S. Sauter and A. Smolianski, Duality based a posteriori error estimator for the Dirichlet problem. Proc. Appl. Math. Mech. 2 (2003) 513–514. [CrossRef] [Google Scholar]
- S. Repin, S. Sauter and A. Smolianski, A posteriori estimation of dimension reduction errors for elliptic problems in thin domains. SIAM J. Numer. Anal. 42 (2004) 1435–1451. [CrossRef] [MathSciNet] [Google Scholar]
- S. Repin, S. Sauter and A. Smolianski, A posteriori control of dimension reduction errors on long domains. Proc. Appl. Math. Mech. 4 (2004) 714–715. [CrossRef] [Google Scholar]
- S. Repin, S. Sauter and A. Smolianski, A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. J. Comput. Appl. Math. 164-165 (2004) 601–612. [CrossRef] [Google Scholar]
- S. Repin, S. Sauter and A. Smolianski, Two-sided a posteriori error estimates for mixed formulations of elliptic problems. SIAM J. Numer. Anal. 45 (2007) 928–945. [CrossRef] [MathSciNet] [Google Scholar]
- C. Schwab, A posteriori modeling error estimation for hierarchic plate model. Numer. Math. 74 (1996) 221–259. [CrossRef] [MathSciNet] [Google Scholar]
- R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Amsterdam (1996). [Google Scholar]
- J. Valdman, Minimization of functional majorant in a posteriori error analysis based on H(div) multigrid-preconditioned CG method. Adv. Numer. Math., Advances Numer. Anal. (2009) 164519. [Google Scholar]
- M. Vogelius and I. Babuška, On a dimensional reduction method I. The optimal selection of basis functions. Math. Comput. 37 (1981) 31–46. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.