Free Access
Issue
ESAIM: M2AN
Volume 46, Number 6, November-December 2012
Page(s) 1389 - 1405
DOI https://doi.org/10.1051/m2an/2012007
Published online 11 April 2012
  1. M. Ainsworth, A posteriori error estimation for fully discrete hierarchic models of elliptic boundary value problems on thin domains. Numer. Math. 80 (1998) 325–362. [CrossRef] [MathSciNet]
  2. M. Ainsworth and A. Arnold, A reliable a posteriori error estimator for adaptive hierarchic modeling, in Adv. Adap. Comp. Meth. Mech., edited by P. Ladevéze and J.T. Oden (1998) 101–114.
  3. M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. Wiley (2000).
  4. I. Babuška and W.C. Rheinboldt, A posteriori error estimates for the finite element method. Int. J. Numer. Math. Eng. 12 (1978) 1597–1615. [CrossRef]
  5. I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. [CrossRef] [MathSciNet]
  6. I. Babuška and R. Rodríguez, The problem of the selection of an a posteriori error indicator based on smoothing techniques. Int. J. Numer. Methods Eng. 36 (1993) 539–567. [CrossRef]
  7. I. Babuška and C. Schwab, A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains. SIAM J. Numer. Anal. 33 (1996) 221–246. [CrossRef] [MathSciNet]
  8. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. Amsterdam, North-Holland (1978).
  9. D. Braess, Finite elements : Theory, Fast Solvers and Application in Solid Mechanics. Cambridge University Press (2007).
  10. D. Braess, An a posteriori error estimate and a comparison theorem for the nonconforming P1 element. Calcolo 46 (2009) 149–155. [CrossRef] [MathSciNet]
  11. D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements. Math. Comp. 77 (2008) 651–672. [CrossRef] [MathSciNet]
  12. C. Carstensen and S. Sauter, A posteriori error analysis for elliptic PDEs on domains with complicated structures. Numer. Math. 96 (2004) 691–721. [CrossRef] [MathSciNet]
  13. M. Chipot, Elliptic Equations : An Introductory Course. Birkhäuser Verlag AG (2009).
  14. Ph. Clément, Approximations by finite element functions using local regularization. RAIRO Anal. Numer. 9 (1975) 77–84.
  15. W. Dörfler, M. Rumpf, An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation. Math. Comp. 67 1361–1382 (1998). [CrossRef] [MathSciNet]
  16. V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994).
  17. P. Jiranek, Z. Strakos and M. Vohralik, A posteriori error estimates including algebraic error : computable upper bounds and stopping criteria for iterative solvers, SIAM J. Sci. Comput. 32 (2010) 1567–1590. [CrossRef] [MathSciNet]
  18. P. Neittaanmäki and S.I. Repin, Reliable Methods for Computer Simulation. Error Control and A Posteriori Estimates. Elsevier, New York (2004).
  19. S. Repin, A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauch. Semin. (POMI) 243 (1997) 201–214.
  20. S. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp. 69 (2000) 481–500. [CrossRef] [MathSciNet]
  21. S. Repin, Two-sided estimates of deviation from exact solutions of uniformly elliptic equations, Proc. of the St. Petersburg Mathematical Society IX, Amer. Math. Soc. Transl. Ser. 2. Amer. Math. Soc., Providence, RI 209 (2003) 143–171.
  22. S. Repin, A Posteriori Error Estimates For Partial Differential Equations. Walter de Gruyter, Berlin (2008).
  23. S. Repin and S. Sauter, Functional a posteriori estimates for the reaction-diffusion problem. C. R. Math. Acad. Sci. Paris 343 (2006) 349–354. [CrossRef] [MathSciNet]
  24. S. Repin and S. Sauter, Computable estimates of the modeling error related to Kirchhoff-Love plate model. Anal. Appl. 8 (2010) 1–20. [CrossRef]
  25. S. Repin and J. Valdman, Functional a posteriori error estimates for problems with nonlinear boundary conditions. J. Numer. Math. 16 (2008) 51–81. [CrossRef] [MathSciNet]
  26. S. Repin, S. Sauter and A. Smolianski, A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions. Computing 70 (2003) 205–233. [MathSciNet]
  27. S. Repin, S. Sauter and A. Smolianski, Duality based a posteriori error estimator for the Dirichlet problem. Proc. Appl. Math. Mech. 2 (2003) 513–514. [CrossRef]
  28. S. Repin, S. Sauter and A. Smolianski, A posteriori estimation of dimension reduction errors for elliptic problems in thin domains. SIAM J. Numer. Anal. 42 (2004) 1435–1451. [CrossRef] [MathSciNet]
  29. S. Repin, S. Sauter and A. Smolianski, A posteriori control of dimension reduction errors on long domains. Proc. Appl. Math. Mech. 4 (2004) 714–715. [CrossRef]
  30. S. Repin, S. Sauter and A. Smolianski, A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. J. Comput. Appl. Math. 164-165 (2004) 601–612. [CrossRef]
  31. S. Repin, S. Sauter and A. Smolianski, Two-sided a posteriori error estimates for mixed formulations of elliptic problems. SIAM J. Numer. Anal. 45 (2007) 928–945. [CrossRef] [MathSciNet]
  32. C. Schwab, A posteriori modeling error estimation for hierarchic plate model. Numer. Math. 74 (1996) 221–259. [CrossRef] [MathSciNet]
  33. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Amsterdam (1996).
  34. J. Valdman, Minimization of functional majorant in a posteriori error analysis based on H(div) multigrid-preconditioned CG method. Adv. Numer. Math., Advances Numer. Anal. (2009) 164519.
  35. M. Vogelius and I. Babuška, On a dimensional reduction method I. The optimal selection of basis functions. Math. Comput. 37 (1981) 31–46.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you