Free Access
Issue
ESAIM: M2AN
Volume 46, Number 6, November-December 2012
Page(s) 1337 - 1362
DOI https://doi.org/10.1051/m2an/2012009
Published online 30 March 2012
  1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces, Pure and Applied Mathematics Series, 2nd edition. Academic Press 140 (2003).
  2. S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations : Bounds on Eigenfunctions of N-Body Schrödinger Operators, Mathematical Notes. Princeton University Press (1982).
  3. M. Bachmayr, Integration of products of Gaussians and wavelets with applications to electronic structure calculations. Preprint AICES, RWTH Aachen (2012).
  4. R. Balder and C. Zenger, The solution of multidimensional real Helmholtz equations on sparse grids. SIAM J. Sci. Comput. 17 (1996) 631–646. [CrossRef] [MathSciNet]
  5. G. Beylkin, On the representation of operators in bases of compactly supported wavelets. SIAM J. Numer. Anal. 29 (1992) 1716–1740. [NASA ADS] [CrossRef] [MathSciNet]
  6. S.F. Boys and N.C. Handy, The determination of energies and wavefunctions with full electronic correlation. Proc. R. Soc. Lond. A 310 (1969) 43–61. [CrossRef]
  7. D. Braess and W. Hackbusch, On the efficient computation of high-dimensional integrals and the approximation by exponential sums, in Multiscale, Nonlinear and Adaptive Approximation, edited by R. DeVore and A. Kunoth. Springer, Berlin, Heidelberg (2009).
  8. H.-J. Bungartz, Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. Ph.D. thesis, Technische Universität München (1992).
  9. F. Chatelin, Spectral Approximation of Linear Operators, Computer Science and Applied Mathematics. Academic Press (1983).
  10. S.R. Chinnamsetty, M. Espig, B.N. Khoromskij, W. Hackbusch and H.-J. Flad, Tensor product approximation with optimal rank in quantum chemistry. J. Chem. Phys. 127 (2007) 084110. [CrossRef] [PubMed]
  11. A. Cohen, Numerical Analysis of Wavelet Methods. Stud. Math. Appl. 32 (2003).
  12. W. Dahmen and C.A. Micchelli, Using the refinement equation for evaluating integrals of wavelets. SIAM J. Numer. Anal. 30 (1993) 507–537. [CrossRef] [MathSciNet]
  13. I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41 (1988) 909–996. [CrossRef] [MathSciNet]
  14. T.J. Dijkema, C. Schwab and R. Stevenson, An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approx. 30 (2009) 423–455. [CrossRef] [MathSciNet]
  15. G. Donovan, J. Geronimo and D. Hardin, Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets. SIAM J. Math. Anal. 27 (1996) 1791–1815. [CrossRef] [MathSciNet]
  16. G. Donovan, J. Geronimo and D. Hardin, Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30 (1999) 1029–1056. [CrossRef] [MathSciNet]
  17. H.-J. Flad, W. Hackbusch, D. Kolb and R. Schneider, Wavelet approximation of correlated wave functions. I. Basics. J. Chem. Phys. 116 (2002) 9641–9657. [CrossRef]
  18. H.-J. Flad, W. Hackbusch and R. Schneider, Best N-term approximation in electronic structure calculations. II. Jastrow factors. ESAIM : M2AN 41 (2007) 261. [CrossRef] [EDP Sciences]
  19. H.-J. Flad, W. Hackbusch, B.N. Khoromskij and R. Schneider, Matrix Methods : Theory, Algorithms and Applications, in Concepts of Data-Sparse Tensor-Product Approximation in Many-Particle Modelling. World Scientific (2010) 313–347.
  20. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergaard Sørensen, Sharp regularity results for many-electron wave functions. Commun. Math. Phys. 255 (2005) 183–227. [CrossRef]
  21. L. Genovese, T. Deutsch, A. Neelov, S. Goedecker and G. Beylkin, Efficient solution of poisson’s equation with free boundary conditions. J. Chem. Phys. 125 (2006) 074105. [CrossRef] [PubMed]
  22. L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S.A. Ghasemi, A. Willand, D. Caliste, O. Zilberberg, M. Rayson, A. Bergman and R. Schneider, Daubechies wavelets as a basis set for density functional pseudopotential calculations. J. Chem. Phys. 129 (2008) 014109. [CrossRef] [PubMed]
  23. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer, Berlin, Heidelberg (1998).
  24. M. Griebel and J. Hamaekers, A wavelet based sparse grid method for the electronic Schrödinger equation, in Proc. of the International Congress of Mathematicians, edited by M. Sanz-Solé, J. Soria, J. Varona and J. Verdera III (2006) 1473–1506.
  25. M. Griebel and J. Hamaekers, Tensor product multiscale many-particle spaces with finite-order weights for the electronic Schrödinger equation. Z. Phys. Chem. 224 (2010) 527–543. Also available as INS Preprint No. 0911. [CrossRef]
  26. M. Griebel and S. Knapek, Optimized tensor-product approximation spaces. Constr. Approx. 16 (2000) 525. [CrossRef] [MathSciNet]
  27. M. Griebel and P. Oswald, Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems. Adv. Comput. Math. 4 (1995) 171–206. [CrossRef] [MathSciNet]
  28. J. Hamaekers, Tensor Product Multiscale Many-Particle Spaces with Finite-Order Weights for the Electronic Schödinger Equation. Ph.D. thesis, Universität Bonn (2009).
  29. H. Harbrecht, R. Schneider and C. Schwab, Multilevel frames for sparse tensor product spaces. Numer. Math. 110 (2008) 199–220. [CrossRef] [MathSciNet]
  30. R.J. Harrison, G.I. Fann, T. Yanai, Z. Gan and G. Beylkin, Multiresolution quantum chemistry : basic theory and initial applications. J. Chem. Phys. 121 (2004) 11587–11598. [CrossRef] [PubMed]
  31. E. Hille, A class of reciprocal functions. Ann. Math. 27 (1926) 427–464. [CrossRef]
  32. J.O. Hirschfelder, Removal of electron-electron poles from many-electron Hamiltonians. J. Chem. Phys. 39 (1963) 3145–3146. [CrossRef]
  33. E. Hylleraas, Über den Grundzustand des Heliumatoms. Z. Phys. 48 (1929) 469.
  34. T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. X (1957) 151–177. [CrossRef] [MathSciNet]
  35. T. Kato, Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften, 2nd edition. Springer-Verlag, Berlin, Heidelberg, New York 132 (1976).
  36. W. Klopper, R12 methods, Gaussian geminals, in Modern Methods and Algorithms of Quantum Chemistry, edited by J. Grotendorst (2000) 181–229.
  37. H.-C. Kreusler and H. Yserentant, The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces. Preprint 94, DFG SPP 1324 (2011).
  38. H. Luo, D. Kolb, H.-J. Flad, W. Hackbusch and T. Koprucki, Wavelet approximation of correlated wave functions. II. Hyperbolic wavelets and adaptive approximation schemes. J. Chem. Phys. 117 (2002) 3625–3638. [CrossRef]
  39. Y. Meyer and R. Coifman, Wavelets : Calderon-Zygmund and multilinear operators, Cambridge Studies in Advanced Mathematics. Cambridge University Press (1997).
  40. A. Neelov and S. Goedecker, An efficient numerical quadrature for the calculation of the potential energy of wavefunctions expressed in the Daubechies wavelet basis. J. Comput. Phys. 217 (2006) 312–339. [CrossRef] [MathSciNet]
  41. M. Nooijen, and R.J. Bartlett, Elimination of Coulombic infinities through transformation of the Hamiltonian. J. Chem. Phys. 109 (1998).
  42. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Analysis of Operators IV. Academic Press (1978).
  43. C. Schwab and R.A. Todor, Sparse finite elements for stochastic elliptic problems – higher order moments. Computing 71 (2003) 43–63. [CrossRef] [MathSciNet]
  44. R. Stevenson, On the compressibility of operators in wavelet coordinates. SIAM J. Math. Anal. 35 (2004) 1110–1132. [CrossRef] [MathSciNet]
  45. W. Sweldens, The lifting scheme : a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3 (1996) 186–200. [CrossRef] [MathSciNet]
  46. S. Tenno, A feasible transcorrelated method for treating electronic cusps using a frozen Gaussian geminal. Chem. Phys. Lett. 330 (2000) 169–174. [CrossRef]
  47. D.P. Tew and W. Klopper, New correlation factors for explicitly correlated electronic wave functions. J. Chem. Phys. 123 (2005) 074101. [CrossRef] [PubMed]
  48. H. Yserentant, On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98 (2004) 731–759. [CrossRef] [MathSciNet]
  49. H. Yserentant, Regularity and Approximability of Electronic Wave Functions. Lect. Notes Math. 2000 (2010).
  50. H. Yserentant, The mixed regularity of electronic wave functions multiplied by explicit correlation factors. ESAIM : M2AN 45 (2011) 803–824. [CrossRef] [EDP Sciences]
  51. A. Zeiser, Direkte Diskretisierung der Schrödingergleichung auf dünnen Gittern. Ph.D. thesis, TU Berlin (2010).
  52. A. Zeiser, Fast matrix-vector multiplication in the sparse-grid Galerkin method. J. Sci. Comput. 47 (2010) 328–346. [CrossRef]
  53. A. Zeiser, Wavelet approximation in weighted Sobolev spaces of mixed order with applications to the electronic Schrödinger equation. To appear in Constr. Approx. (2011) DOI : 10.1007/s00365-011-9138-7.
  54. H.J.A. Zweistra, C.C.M. Samson and W. Klopper, Similarity-transformed Hamiltonians by means of Gaussian-damped interelectronic distances. Collect. Czech. Chem. Commun. 68 (2003) 374–386. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you