Free Access
Issue
ESAIM: M2AN
Volume 47, Number 1, January-February 2013
Page(s) 33 - 55
DOI https://doi.org/10.1051/m2an/2012018
Published online 31 July 2012
  1. A.B. Abdallah, F.B. Belgacem, Y. Maday and F. Rapetti, Mortaring the two-dimensional edge finite elements for the discretization of some electromagnetic models. Math. Mod. Methods Appl. Sci. 14 (2004) 1635–1656. [CrossRef] [Google Scholar]
  2. M. Azaïez, C. Bernardi, M. Dauge and Y. Maday, Spectral Methods for Axisymetric Domains. Series in Appl. Math. 3 (1999). [Google Scholar]
  3. F.B. Belgacem, C. Bernardi and F. Rapetti, Numerical analysis of a model for an axisymmetric guide for electromagnetic waves. Part I : The continuous problem and its Fourier expansion. Math. Meth. Appl. Sci. 28 (2005) 2007–2029. [CrossRef] [Google Scholar]
  4. C. Bernardi and Y. Maday, Properties of some weighted Sobolev spaces and application to spectral approximations. SIAM J. Numer. Anal. 26 (1989) 769–829. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques. Math. Appl. 10 (1992). [Google Scholar]
  6. C. Bernardi, M. Dauge and M. Azaïez, Numerical Analysis and Spectral Methods in Axisymetric Problems. Rapport Interne, Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie (1995). [Google Scholar]
  7. S. Bertoluzza, S. Falletta and V. Perrier, The Mortar method in the wavelet context. Model. Math. Anal. Numer. 35 (2001) 647–673. [CrossRef] [EDP Sciences] [Google Scholar]
  8. H. Brezis, Analyse fonctionnelle, in Théorie et Applications. Masson, Paris (1983). [Google Scholar]
  9. N. Chorfi, Traitement de singularités géométriques par méthode d’éléments spectraux avec joints. Thèse de l’Université Pierre et Marie Curie, Paris VI (1998). [Google Scholar]
  10. M. Dauge, Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math. 1341 (1988). [Google Scholar]
  11. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, in Theory and Algorithms. Springer-Verlag (1986). [Google Scholar]
  12. P. Grisvard, Singularities in boundary value problems, in Collect. RMA 22 (1992). [Google Scholar]
  13. P. Le Tallec, Domain decomposition methods in computational mechanics, in Comput. Mech. Adv. North-Holland (1994). [Google Scholar]
  14. R. Pasquetti, L.F. Pavarino, F. Rapetti and E. Zampieri, Overlapping Schwarz methods for Fekete and Gauss–Lobatto spectral elements. SIAM J. Scient. Comput. 29 (2007) 1073–1092. [CrossRef] [Google Scholar]
  15. Y. Maday, C. Mavriplis and A.T. Patera, Nonconforming mortar element methods : application to spectral discretizations, in Domain decomposition methods. SIAM (1989) 392–418. [Google Scholar]
  16. J. Satouri, Méthodes d’éléments spectraux avec joints pour des géométries axisymétriques. Thèse de l’Université Pierre et Marie Curie, Paris VI (2010). [Google Scholar]
  17. G. Strang and G.J. Fix, An Analysis of the Finite Element Method, in Automatic Computation. Prentice Hall Serie (1973). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you