Free Access
Volume 47, Number 1, January-February 2013
Page(s) 57 - 81
Published online 31 July 2012
  1. B. Ben Moussa and J.P. Vila, Convergence of SPH methods for scalar nonlinear conservation laws. SIAM J. Numer. Anal. 37 (2000) 863–887. [CrossRef] [MathSciNet]
  2. W. Benz, The Numerical Modelling of Nonlinear Stellar Pulsations, Problems and Prospects, a review, in Smooth Particle Hydrodynamics : NATO ASIS Series (1989) 269–287.
  3. C. Berthon, Contribution à l’analyse numérique des équations de Navier-Stokes compressibles à deux entropies spécifiques. Application à la turbulence compressible. Ph.D. thesis, Université Paris VI (1998).
  4. M. Coquerelle and G.-H. Cottet, A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227 (2008) 9121–9137. [CrossRef]
  5. G.-H. Cottet and P.D. Koumoutsakos, Vortex methods. Cambridge University Press (2000).
  6. G.-H. Cottet and A. Magni, TVD remeshing schemes for particle methods. C. R. Acad. Sci. Paris, Ser. I 347 (2009) 1367–1372. [CrossRef]
  7. G.-H. Cottet and L. Weynans, Particle methods revisited : a class of high-order finite-difference schemes. C. R. Acad. Sci. Paris, Ser. I 343 (2006) 51–56. [CrossRef] [MathSciNet]
  8. G.-H. Cottet, B. Michaux, S. Ossia and G. Vanderlinden, A comparison of spectral and vortex methods in three-dimensional incompressible flow. J. Comput. Phys. 175 (2002) 702–712. [CrossRef]
  9. M.W. Evans and F.H. Harlow, The particle-in-cell method for hydrodynamics calculations. Technical Report, Los Alamos Scientific Laboratory (1956).
  10. A. Ghoniem and D. Wee, Modified interpolation kernels for treating diffusion and remeshing in vortex methods. J. Comput. Phys. 213 (2006) 239–263. [CrossRef]
  11. R.A. Gingold and J.J. Monaghan, Smoothed particle hydrodynamics : theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181 (1977) 375–389. [NASA ADS] [CrossRef]
  12. F.H. Harlow, Hydrodynamic problems involving large fluid distorsion. J. Assoc. Comput. Mach. 4 (1957) 137–142. [CrossRef]
  13. A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357–393. [NASA ADS] [CrossRef] [MathSciNet]
  14. T. Hou and P.G. Lefloch, Why non-conservative schemes converge to wrong solutions : error analysis. Math. Comput. 62 (1994) 497–530. [CrossRef] [MathSciNet]
  15. P. Koumoutsakos and S. Hieber. A Lagrangian particle level set method. J. Comput. Phys. 210 (2005) 342–367. [CrossRef]
  16. P. Koumoutsakos and A. Leonard, High resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296 (1995) 1–38. [CrossRef]
  17. N. Lanson and J.P. Vila, Convergence des méthodes particulaires renormalisées pour les systèmes de Friedrichs. C. R. Acad. Sci. Paris, Ser. I 349 (2005) 465–470. [CrossRef]
  18. N. Lanson and J.P. Vila, Renormalized meshfree schemes II : convergence for scalar conservation laws. SIAM J. Numer. Anal. 46 (2008) 1935–1964. [CrossRef] [MathSciNet]
  19. R.J. LeVeque, Finite-volume methods for hyperbolic problems. Cambridge University Press (2002).
  20. A. Magni, Méthodes particulaires avec remaillage : analyse numérique nouveaux schémas et applications pour la simulation d’équations de transport. Ph.D. thesis, Université de Grenoble. Available on : tel-00623128/fr/ (2011).
  21. A. Magni and G.-H. Cottet, Accurate, non-oscillatory, remeshing schemes for particle methods. J. Comput. Phys. 231 (2012) 152–172. [CrossRef]
  22. A. Majda and S. Osher, Numerical viscosity and the entropy condition. Commun. Pure Appl. Math. 32 (1979) 797–838. [CrossRef]
  23. J.J. Monaghan, Why particle methods work. SIAM J. Sci. Stat. Comput 3 (1982) 422–433. [CrossRef]
  24. J.J. Monaghan, Extrapolating B-splines for interpolation. J. Comput. Phys. 60 (1985) 253–262. [CrossRef]
  25. J.J. Monaghan, Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30 (1992) 543–574. [NASA ADS] [CrossRef]
  26. P. Ploumhans, G.S. Winckelmans, J.K. Salmon, A. Leonard and M.S. Warren, Vortex methods for direct numerical simulation of three-dimensional bluff body flows : application to the sphere at Re = 300, 500, and 1000. J. Comput. Phys. 178 (2002) 427–463. [CrossRef]
  27. P. Poncet, Topological aspects of the three-dimensional wake behind rotary oscillating circular cylinder. J. Fluid Mech. 517 (2004) 27–53. [CrossRef]
  28. G.A. Sod, A survey of several finite-difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27 (1978) 1–131. [NASA ADS] [CrossRef] [MathSciNet]
  29. L. Weynans, Méthode particulaire multi-niveaux pour la dynamique des gaz, application au calcul d’écoulements multifluides. Ph.D. thesis, Université Joseph Fourier. Available on : (2006).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you