Free Access
Issue
ESAIM: M2AN
Volume 47, Number 1, January-February 2013
Page(s) 83 - 108
DOI https://doi.org/10.1051/m2an/2012020
Published online 31 July 2012
  1. G. Allaire, F. de Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method. Control Cybern. 34 (2005) 59–80. [Google Scholar]
  2. H. Ammari and H. Kang, High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter. SIAM J. Math. Anal. 34 (2003) 1152–1166. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Ammari and H. Kang, Reconstruction of small inhomogeneities from boundary measurements. Lect. Notes Math. 1846 (2004). [Google Scholar]
  4. H. Ammari and J.K. Seo, An accurate formula for the reconstruction of conductivity inhomogeneities. Adv. Appl. Math. 30 (2003) 679–705. [CrossRef] [Google Scholar]
  5. H. Ammari, S. Moskow and M.S. Vogelius, Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume. ESAIM : COCV 9 (2003) 49–66. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. H. Ammari, E. Iakovleva, D. Lesselier and G. Perrusson, MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions. SIAM J. Sci. Comput. 29 (2007) 674–709. [CrossRef] [MathSciNet] [Google Scholar]
  7. H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation. SIAM J. Appl. Math. 68 (2008) 1557–1573. [CrossRef] [Google Scholar]
  8. H. Ammari, P. Garapon, H. Kang and H. Lee, A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements. Quart. Appl. Math. 66 (2008) 139–175. [MathSciNet] [Google Scholar]
  9. H. Ammari, P. Garapon, H. Kang and H. Lee, Separation of scales in elasticity imaging : a numerical study. J. Comput. Math. 28 (2010) 354–370. [CrossRef] [Google Scholar]
  10. S. Amstutz, M. Masmoudi and B. Samet, The topological asymptotic for the Helmoltz equation. SIAM J. Control Optim. 42 (2003) 1523–1544. [Google Scholar]
  11. S. Amstutz, I. Horchani and M. Masmoudi, Crack detection by the topological gradient method. Control Cybern. 34 (2005) 81–101. [Google Scholar]
  12. G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing : Partial Differential Equations and the Calculus of Variations. Appl. Math. Sci. 147 (2001). [Google Scholar]
  13. D. Auroux and M. Masmoudi, A one-shot inpainting algorithm based on the topological asymptotic analysis. Comput. Appl. Math. 25 (2006) 251–267. [MathSciNet] [Google Scholar]
  14. D. Auroux and M. Masmoudi, Image processing by topological asymptotic expansion. J. Math. Imag. Vision 33 (2009) 122–134. [CrossRef] [Google Scholar]
  15. D. Auroux and M. Masmoudi, Image processing by topological asymptotic analysis. ESAIM : Proc. Math. Methods Imag. Inverse Probl. 26 (2009) 24–44. [Google Scholar]
  16. L.J. Belaid, M. Jaoua, M. Masmoudi and L. Siala, Image restoration and edge detection by topological asymptotic expansion. C. R. Acad. Sci. Paris 342 (2006) 313–318. [CrossRef] [Google Scholar]
  17. M. Bonnet, Higher-order topological sensitivity for 2-d potential problems. application to fast identification of inclusions. Int. J. Solids Struct. 46 (2009) 2275–2292. [CrossRef] [Google Scholar]
  18. M. Bonnet, Fast identification of cracks using higher-order topological sensitivity for 2-d potential problems. Special issue on the advances in mesh reduction methods. In honor of Professor Subrata Mukherjee on the occasion of his 65th birthday. Eng. Anal. Bound. Elem. 35 (2011) 223–235. [Google Scholar]
  19. Y. Capdeboscq and M.S. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. ESAIM : M2AN 37 (2003) 159–173. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  20. Y. Capdeboscq and M.S. Vogelius, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements. ESAIM : M2AN 37 (2003) 227–240. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  21. J. Fehrenbach and M. Masmoudi, Coupling topological gradient and Gauss-Newton methods, in IUTAM Symposium on Topological Design Optimization. Edited by M.P. Bendsoe, N. Olhoff and O. Sigmund. Springer (2006). [Google Scholar]
  22. J. Fehrenbach, M. Masmoudi, R. Souchon and P. Trompette, Detection of small inclusions using elastography. Inverse Probl. 22 (2006) 1055–1069. [Google Scholar]
  23. S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for pde systems : the elasticity case. SIAM J. Control Optim. 39 (2001) 1756–1778. [Google Scholar]
  24. P. Guillaume and M. Hassine, Removing holes in topological shape optimization. ESAIM : COCV 14 (2008) 160–191. [CrossRef] [EDP Sciences] [Google Scholar]
  25. P. Guillaume and K. Sid Idris, The topological asymptotic expansion for the Dirichlet problem. SIAM J. Control Optim. 41 (2002) 1042–1072. [CrossRef] [MathSciNet] [Google Scholar]
  26. P. Guillaume and K. Sid Idris, The topological sensitivity and shape optimization for the Stokes equations. SIAM J. Control Optim. 43 (2004) 1–31. [CrossRef] [MathSciNet] [Google Scholar]
  27. M. Hassine, S. Jan and M. Masmoudi, From differential calculus to 0-1 topological optimization. SIAM, J. Control Optim. 45 (2007) 1965–1987. [CrossRef] [MathSciNet] [Google Scholar]
  28. S. Larnier and J. Fehrenbach, Edge detection and image restoration with anisotropic topological gradient, in IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) (2010) 1362–1365. [Google Scholar]
  29. L. Martin, Conception aérodynamique robuste. Ph.D. thesis, Université Paul Sabatier, Toulouse, France (2011). [Google Scholar]
  30. M. Masmoudi, The topological asymptotic, in Computational Methods for Control Applications, GAKUTO International Series, edited by R. Glowinski, H. Karawada and J. Periaux. Math. Sci. Appl. 16 (2001) 53–72. [Google Scholar]
  31. B. Mohammadi and O. Pironneau, Shape optimization in fluid mechanics. Annu. Rev. Fluid Mech. 36 (2004) 255–279. [Google Scholar]
  32. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi and X. Li, Elastography : a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imag. 13 (1991) 111–134. [CrossRef] [PubMed] [Google Scholar]
  33. J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivan and T. Varghese, Elastography : imaging the elastic properties of soft tissues with ultrasound. J. Med. Ultrason. 29 (2002) 155–171. [CrossRef] [Google Scholar]
  34. B. Samet, The topological asymptotic with respect to a singular boundary perturbation. C. R. Math. 336 (2003) 1033–1038. [CrossRef] [MathSciNet] [Google Scholar]
  35. A. Schumacher, Topologieoptimisierung von Bauteilstrukturen unter Verwendung von Lopchpositionierungkrieterien. Ph.D. thesis, Universitat-Gesamthochschule Siegen, Germany (1995). [Google Scholar]
  36. J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251–1272. [CrossRef] [MathSciNet] [Google Scholar]
  37. Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli, Image quality assessment : from error visibility to structural similarity. IEEE Trans. Image Process. 13 (2004) 600–612. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you