Free Access
Issue
ESAIM: M2AN
Volume 47, Number 1, January-February 2013
Page(s) 83 - 108
DOI https://doi.org/10.1051/m2an/2012020
Published online 31 July 2012
  1. G. Allaire, F. de Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method. Control Cybern. 34 (2005) 59–80.
  2. H. Ammari and H. Kang, High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter. SIAM J. Math. Anal. 34 (2003) 1152–1166. [CrossRef] [MathSciNet]
  3. H. Ammari and H. Kang, Reconstruction of small inhomogeneities from boundary measurements. Lect. Notes Math. 1846 (2004).
  4. H. Ammari and J.K. Seo, An accurate formula for the reconstruction of conductivity inhomogeneities. Adv. Appl. Math. 30 (2003) 679–705. [CrossRef]
  5. H. Ammari, S. Moskow and M.S. Vogelius, Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume. ESAIM : COCV 9 (2003) 49–66. [CrossRef] [EDP Sciences] [MathSciNet]
  6. H. Ammari, E. Iakovleva, D. Lesselier and G. Perrusson, MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions. SIAM J. Sci. Comput. 29 (2007) 674–709. [CrossRef] [MathSciNet]
  7. H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation. SIAM J. Appl. Math. 68 (2008) 1557–1573. [CrossRef]
  8. H. Ammari, P. Garapon, H. Kang and H. Lee, A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements. Quart. Appl. Math. 66 (2008) 139–175. [MathSciNet]
  9. H. Ammari, P. Garapon, H. Kang and H. Lee, Separation of scales in elasticity imaging : a numerical study. J. Comput. Math. 28 (2010) 354–370. [CrossRef]
  10. S. Amstutz, M. Masmoudi and B. Samet, The topological asymptotic for the Helmoltz equation. SIAM J. Control Optim. 42 (2003) 1523–1544. [CrossRef] [MathSciNet]
  11. S. Amstutz, I. Horchani and M. Masmoudi, Crack detection by the topological gradient method. Control Cybern. 34 (2005) 81–101.
  12. G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing : Partial Differential Equations and the Calculus of Variations. Appl. Math. Sci. 147 (2001).
  13. D. Auroux and M. Masmoudi, A one-shot inpainting algorithm based on the topological asymptotic analysis. Comput. Appl. Math. 25 (2006) 251–267. [MathSciNet]
  14. D. Auroux and M. Masmoudi, Image processing by topological asymptotic expansion. J. Math. Imag. Vision 33 (2009) 122–134. [CrossRef]
  15. D. Auroux and M. Masmoudi, Image processing by topological asymptotic analysis. ESAIM : Proc. Math. Methods Imag. Inverse Probl. 26 (2009) 24–44.
  16. L.J. Belaid, M. Jaoua, M. Masmoudi and L. Siala, Image restoration and edge detection by topological asymptotic expansion. C. R. Acad. Sci. Paris 342 (2006) 313–318. [CrossRef]
  17. M. Bonnet, Higher-order topological sensitivity for 2-d potential problems. application to fast identification of inclusions. Int. J. Solids Struct. 46 (2009) 2275–2292. [CrossRef]
  18. M. Bonnet, Fast identification of cracks using higher-order topological sensitivity for 2-d potential problems. Special issue on the advances in mesh reduction methods. In honor of Professor Subrata Mukherjee on the occasion of his 65th birthday. Eng. Anal. Bound. Elem. 35 (2011) 223–235. [CrossRef]
  19. Y. Capdeboscq and M.S. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. ESAIM : M2AN 37 (2003) 159–173. [CrossRef] [EDP Sciences] [MathSciNet]
  20. Y. Capdeboscq and M.S. Vogelius, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements. ESAIM : M2AN 37 (2003) 227–240. [CrossRef] [EDP Sciences] [MathSciNet]
  21. J. Fehrenbach and M. Masmoudi, Coupling topological gradient and Gauss-Newton methods, in IUTAM Symposium on Topological Design Optimization. Edited by M.P. Bendsoe, N. Olhoff and O. Sigmund. Springer (2006).
  22. J. Fehrenbach, M. Masmoudi, R. Souchon and P. Trompette, Detection of small inclusions using elastography. Inverse Probl. 22 (2006) 1055–1069. [CrossRef]
  23. S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for pde systems : the elasticity case. SIAM J. Control Optim. 39 (2001) 1756–1778. [CrossRef] [MathSciNet]
  24. P. Guillaume and M. Hassine, Removing holes in topological shape optimization. ESAIM : COCV 14 (2008) 160–191. [CrossRef] [EDP Sciences]
  25. P. Guillaume and K. Sid Idris, The topological asymptotic expansion for the Dirichlet problem. SIAM J. Control Optim. 41 (2002) 1042–1072. [CrossRef] [MathSciNet]
  26. P. Guillaume and K. Sid Idris, The topological sensitivity and shape optimization for the Stokes equations. SIAM J. Control Optim. 43 (2004) 1–31. [CrossRef] [MathSciNet]
  27. M. Hassine, S. Jan and M. Masmoudi, From differential calculus to 0-1 topological optimization. SIAM, J. Control Optim. 45 (2007) 1965–1987. [CrossRef] [MathSciNet]
  28. S. Larnier and J. Fehrenbach, Edge detection and image restoration with anisotropic topological gradient, in IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) (2010) 1362–1365.
  29. L. Martin, Conception aérodynamique robuste. Ph.D. thesis, Université Paul Sabatier, Toulouse, France (2011).
  30. M. Masmoudi, The topological asymptotic, in Computational Methods for Control Applications, GAKUTO International Series, edited by R. Glowinski, H. Karawada and J. Periaux. Math. Sci. Appl. 16 (2001) 53–72.
  31. B. Mohammadi and O. Pironneau, Shape optimization in fluid mechanics. Annu. Rev. Fluid Mech. 36 (2004) 255–279. [CrossRef]
  32. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi and X. Li, Elastography : a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imag. 13 (1991) 111–134. [CrossRef] [PubMed]
  33. J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivan and T. Varghese, Elastography : imaging the elastic properties of soft tissues with ultrasound. J. Med. Ultrason. 29 (2002) 155–171. [CrossRef]
  34. B. Samet, The topological asymptotic with respect to a singular boundary perturbation. C. R. Math. 336 (2003) 1033–1038. [CrossRef] [MathSciNet]
  35. A. Schumacher, Topologieoptimisierung von Bauteilstrukturen unter Verwendung von Lopchpositionierungkrieterien. Ph.D. thesis, Universitat-Gesamthochschule Siegen, Germany (1995).
  36. J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251–1272. [CrossRef] [MathSciNet]
  37. Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli, Image quality assessment : from error visibility to structural similarity. IEEE Trans. Image Process. 13 (2004) 600–612. [NASA ADS] [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you