Free Access
Volume 47, Number 1, January-February 2013
Page(s) 109 - 123
Published online 31 July 2012
  1. X. Blanc, C. Le Bris, and P.-L. Lions, From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164 (2002) 341–381. [CrossRef] [MathSciNet] [Google Scholar]
  2. X. Blanc, C. Le Bris, and F. Legoll, Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics. ESAIM : M2AN 39 (2005) 797–826. [CrossRef] [EDP Sciences] [Google Scholar]
  3. A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems. Math. Models Methods Appl. Sci. 17 (2007) 985–1037. [CrossRef] [Google Scholar]
  4. A. Braides, A.J. Lew and M. Ortiz, Effective cohesive behavior of layers of interatomic planes. Arch. Ration. Mech. Anal. 180 (2006) 151–182. [CrossRef] [MathSciNet] [Google Scholar]
  5. R.C. Cammarata, Surface and interface stress effects in thin films. Prog. Surf. Sci. 46 (1994) 1–38. [CrossRef] [Google Scholar]
  6. S. Cuenot, C. Frétigny, S. Demoustier-Champagne and B. Nysten, Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69 (2004) 165410. [CrossRef] [Google Scholar]
  7. J. Diao, K. Gall and M.L. Dunn, Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2 (2003) 656–660. [CrossRef] [PubMed] [Google Scholar]
  8. M. Dobson and M. Luskin, An analysis of the effect of ghost force oscillation on quasicontinuum error. ESAIM : M2AN 43 (2009) 591–604. [CrossRef] [EDP Sciences] [Google Scholar]
  9. M. Dobson, M. Luskin and C. Ortner, Accuracy of quasicontinuum approximations near instabilities. J. Mech. Phys. Solids 58 (2010) 1741–1757. [CrossRef] [MathSciNet] [Google Scholar]
  10. W. E and P. Ming, Cauchy–Born rule and the stability of crystalline solids : static problems. Arch. Ration. Mech. Anal. 183 (2007) 241–297. [Google Scholar]
  11. M. Farsad, F.J. Vernerey and H.S. Park, An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials. Int. J. Numer. Methods Eng. 84 (2010) 1466–1489. [CrossRef] [Google Scholar]
  12. G. Friesecke and F. Theil, Validity and failure of the Cauchy–Born hypothesis in a two-dimensional mass-spring lattice. J. Nonlinear Sci. 12 (2002) 445–478. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  13. W. Gao, S.W. Yu and G.Y. Huang, Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnol. 17 (2006) 1118–1122. [CrossRef] [Google Scholar]
  14. M.E. Gurtin and A. Murdoch, A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57 (1975) 291–323. [Google Scholar]
  15. J. He and C.M. Lilley, The finite element absolute nodal coordinate formulation incorporated with surface stress effect to model elastic bending nanowires in large deformation. Comput. Mech. 44 (2009) 395–403. [CrossRef] [Google Scholar]
  16. A. Javili and P. Steinmann, A finite element framework for continua with boundary energies. part I : the two-dimensional case. Comput. Methods Appl. Mech. Eng. 198 (2009) 2198–2208. [CrossRef] [Google Scholar]
  17. H. Liang, M. Upmanyu and H. Huang, Size-dependent elasticity of nanowires : nonlinear effects. Phys. Rev. B 71 (2005) R241–403. [CrossRef] [Google Scholar]
  18. W. Liang, M. Zhou and F. Ke, Shape memory effect in Cu nanowires. Nano Lett. 5 (2005) 2039–2043. [CrossRef] [PubMed] [Google Scholar]
  19. C. Ortner and F. Theil, Nonlinear elasticity from atomistic mechanics. E-prints arXiv:1202.3858v3 (2012). [Google Scholar]
  20. H.S. Park, Surface stress effects on the resonant properties of silicon nanowires. J. Appl. Phys. 103 (2008) 123504. [CrossRef] [Google Scholar]
  21. H.S. Park, Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered. Nanotechnol. 20 (2009) 115701. [CrossRef] [Google Scholar]
  22. H.S. Park and P.A. Klein, Surface Cauchy–Born analysis of surface stress effects on metallic nanowires. Phys. Rev. B 75 (2007) 085408. [CrossRef] [Google Scholar]
  23. H.S. Park and P.A. Klein, A surface Cauchy–Born model for silicon nanostructures. Comput. Methods Appl. Mech. Eng. 197 (2008) 3249–3260. [CrossRef] [Google Scholar]
  24. H.S. Park and P.A. Klein, Surface stress effects on the resonant properties of metal nanowires : the importance of finite deformation kinematics and the impact of the residual surface stress. J. Mech. Phys. Solids 56 (2008) 3144–3166. [CrossRef] [Google Scholar]
  25. H.S. Park, K. Gall and J.A. Zimmerman, Shape memory and pseudoelasticity in metal nanowires. Phys. Rev. Lett. 95 (2005) 255504. [CrossRef] [PubMed] [Google Scholar]
  26. H.S. Park, P.A. Klein and G.J. Wagner, A surface Cauchy–Born model for nanoscale materials. Int. J. Numer. Methods Eng. 68 (2006) 1072–1095. [Google Scholar]
  27. H.S. Park, W. Cai, H.D. Espinosa and H. Huang, Mechanics of crystalline nanowires. MRS Bull. 34 (2009) 178–183. [CrossRef] [Google Scholar]
  28. H.S. Park, M. Devel and Z. Wang, A new multiscale formulation for the electromechanical behavior of nanomaterials. Comput. Methods Appl. Mech. Eng. 200 (2011) 2447–2457. [CrossRef] [Google Scholar]
  29. H.-G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations, Convection-diffusion-reaction and flow problems, 2nd edition. Springer Series in Comput. Math. 24 (2008). [Google Scholar]
  30. P. Rosakis, Continuum surface energy from a lattice model. E-prints arXiv:1201.0712 (2012). [Google Scholar]
  31. L. Scardia, A. Schlömerkemper and C. Zanini, Boundary layer energies for nonconvex discrete systems. Math. Mod. Methods Appl. Sci. 21 (2011) 777–817. [CrossRef] [Google Scholar]
  32. B. Schmidt. On the passage from atomic to continuum theory for thin films. Arch. Ration. Mech. Anal. 190 (2008) 1–55. [CrossRef] [MathSciNet] [Google Scholar]
  33. J.-H. Seo, Y. Yoo, N.-Y. Park, S.-W. Yoon, H. Lee, S. Han, S.-W. Lee, T.-Y. Seong, S.-C. Lee, K.-B. Lee, P.-R. Cha, H.S. Park, B. Kim and J.-P. Ahn, Superplastic deformation of defect-free au nanowires by coherent twin propagation. Nano Lett. 11 (2011) 3499–3502. [CrossRef] [PubMed] [Google Scholar]
  34. A.V. Shapeev, Consistent energy-based atomistic/continuum coupling for two-body potentials in one and two dimensions. Multiscale Model. Simul. 9 (2011) 905–932. [Google Scholar]
  35. C.Q. Sun, B.K. Tay, X.T. Zeng, S. Li, T.P. Chen, J. Zhou, H.L. Bai and E.Y. Jiang, Bond-order-bond-length-bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. J. Phys. : Condens. Matter 14 (2002) 7781–7795. [CrossRef] [Google Scholar]
  36. F. Theil, A proof of crystallization in two dimensions. Commun. Math. Phys. 262 (2006) 209–236. [CrossRef] [MathSciNet] [Google Scholar]
  37. F. Theil, Surface energies in a two-dimensional mass-spring model for crystals. ESAIM : M2AN 45 (2011) 873–899. [CrossRef] [EDP Sciences] [Google Scholar]
  38. G. Yun and H.S. Park, A multiscale, finite deformation formulation for surface stress effects on the coupled thermomechanical behavior of nanomaterials. Comput. Methods Appl. Mech. Eng. 197 (2008) 3337–3350. [CrossRef] [Google Scholar]
  39. G. Yun and H.S. Park, Surface stress effects on the bending properties of fcc metal nanowires. Phys. Rev. B 79 (2009) 195421. [CrossRef] [Google Scholar]
  40. J. Yvonnet, H. Le Quang and Q.-C. He, An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites. Comput. Mech. 42 (2008) 119–131. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you