Free Access
Issue
ESAIM: M2AN
Volume 47, Number 1, January-February 2013
Page(s) 125 - 147
DOI https://doi.org/10.1051/m2an/2012023
Published online 31 July 2012
  1. B. Aksoylu and M. Holst, Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J. Numer. Anal. 44 (2006) 1005–1025. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Aksoylu, S. Bond and M. Holst, An odyssey into local refinement and multilevel preconditioning III : implementation and numerical experiments. SIAM J. Sci. Comput. 25 (2003) 478–498. [CrossRef] [Google Scholar]
  3. D. Arnold, R. Falk and R. Winther, Multigrid in H(div) and H(curl). Numer. Math. 85 (2000) 197–218. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Bai and A. Brandt, Local mesh refinement multilevel techniques. SIAM J. Sci. Stat. Comput. 8 (1987) 109–134. [CrossRef] [Google Scholar]
  5. E. Bänsch, Local mesh refinement in 2 and 3 dimensions. Impact Comput. Sci. Eng. 3 (1991) 181–191. [Google Scholar]
  6. R. Beck, P. Deuflhard, R. Hiptmair, R.H.W. Hoppe and B. Wohlmuth, Adaptive multilevel methods for edge element discretizations of Maxwell’s equations. Surv. Math. Indust. 8 (1999) 271–312. [Google Scholar]
  7. R. Beck, R. Hiptmair, R.H.W. Hoppe and B. Wohlmuth, Residual based a posteriori error estimators for eddy current computation. ESAIM : M2AN 34 (2000) 159–182. [Google Scholar]
  8. A. Bossavit, Computational Electromagnetism : Variational Formulations, Complementarity, Edge Elements. Academic Press, San Diego (1998). [Google Scholar]
  9. J.H. Bramble, Multigrid Methods. Pitman (1993). [Google Scholar]
  10. J.H. Bramble, J.E. Pasciak, J. Wang and J. Xu, Convergence estimates for product iterative methods with applications to domain decomposition. Math. Comp. 57 (1991) 23–45. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.H. Bramble, D.Y. Kwak and J.E. Pasciak, Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems. SIAM J. Numer. Anal. 31 (1994) 1746–1763. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Carstensen and R.H.W. Hoppe, Convergence analysis of an adaptive edge finite element method for the 2d eddy current equations. J. Numer. Math. 13 (2005) 19–32. [CrossRef] [MathSciNet] [Google Scholar]
  13. H. Chen and X. Xu, Local multilevel methods for adaptive finite element methods for nonsymmetric and indefinite elliptic boundary value problems. SIAM J. Numer. Anal. 47 (2010) 4492–4516. [CrossRef] [MathSciNet] [Google Scholar]
  14. Z. Chen, L. Wang and W. Zheng, An adaptive multilevel method for time-harmonic Maxwell equations with singularities. SIAM J. Sci. Comput. 29 (2007) 118–138. [Google Scholar]
  15. J. Chen, Y. Xu and J. Zou, Convergence analysis of an adaptive edge element method for Maxwell’s equations. Appl. Numer. Math. 59 (2009) 2950–2969. [CrossRef] [Google Scholar]
  16. W. Dahmen and A. Kunoth, Multilevel preconditioning. Numer. Math. 63 (1992) 315–344. [CrossRef] [MathSciNet] [Google Scholar]
  17. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Gopalakrishnan and J. Pasciak, Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations. Math. Comp. 72 (2003) 1–15. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Gopalakrishnan, J. Pasciak and L.F. Demkowicz, Analysis of a multigrid algorithm for time harmonic Maxwell equations. SIAM J. Numer. Anal. 42 (2004) 90–108. [CrossRef] [MathSciNet] [Google Scholar]
  20. R. Hiptmair, Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36 (1998) 204–225. [CrossRef] [Google Scholar]
  21. R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237–339. [CrossRef] [MathSciNet] [Google Scholar]
  22. R. Hiptmair and J. Xu, Nodal auxiliary spaces preconditions in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45 (2007) 2483–2509. [CrossRef] [MathSciNet] [Google Scholar]
  23. R. Hiptmair and W. Zheng, Local multigrid in H(curl). J. Comput. Math. 27 (2009) 573–603. [CrossRef] [Google Scholar]
  24. R. Hiptmair, H. Wu and W. Zheng, On uniform convergence theory of local multigrid methods in H1(Ω) and H(curl). Preprint (2010). [Google Scholar]
  25. R.H.W. Hoppe and J. Schöberl, Convergence of adaptive edge element methods for the 3D eddy currents equations. J. Comput. Math. 27 (2009) 657–676. [Google Scholar]
  26. R.H.W. Hoppe, X. Xu and H. Chen, Local Multigrid on Adaptively Refined Meshes and Multilevel Preconditioning with Applications to Problems in Electromagnetism and Acoustics, in Efficient Preconditioned Solution Methods for Elliptic Partial Differential Equations, edited by O. Axelsson and J. Karatson. Bentham, Bussum, The Netherlands (2010) 125–145. [Google Scholar]
  27. R. Leis, Exterior boundary-value problems in mathematical physics, in Trends in Applications of Pure Mathematics to Mechanics, edited by H. Zorski. Monographs Stud. Math. 5 (1979) 187–203. [Google Scholar]
  28. P. Monk, A posteriori error indicators for Maxwell’s equations. Comput. Appl. Math. 100 (1998) 173–190. [CrossRef] [MathSciNet] [Google Scholar]
  29. P. Monk, Finite element methods for Maxwell equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003). [Google Scholar]
  30. J.-C. Nédélec, Mixed finite element in lR3. Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet] [Google Scholar]
  31. J.-C. Nédélec, A new family of mixed finite elements in lR3. Numer. Math. 50 (1986) 57–81. [CrossRef] [MathSciNet] [Google Scholar]
  32. P. Oswald, Multilevel Finite Element Approximation : Theory and Applications. Teubner, Stuttgart (1994). [Google Scholar]
  33. U. Rüde, Fully adaptive multigrid methods. SIAM J. Numer. Anal. 30 (1993) 230–248. [CrossRef] [MathSciNet] [Google Scholar]
  34. O. Sterz, A. Hauser and G. Wittum, Adaptive local multigrid methods for solving time-harmonic eddy current problems. IEEE Trans. Magn. 42 (2006) 309–318. [CrossRef] [Google Scholar]
  35. L. Tartar, Introduction to Sobolev Spaces and Interpolation Theory. Springer, Berlin, Heidelberg, New York (2007). [Google Scholar]
  36. H. Whitney, Geometric Integration Theory. Princeton University Press, Princeton (1957). [Google Scholar]
  37. H.J. Wu and Z.M. Chen, Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China 39 (2006) 1405–1429. [Google Scholar]
  38. J. Xu, L. Chen and R. Nochetto, Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and unstructured grids, in Multiscale, Nonlinear and Adaptive Approximation. Springer (2009) 599–659. [Google Scholar]
  39. X. Xu, H. Chen and R.H.W. Hoppe, Optimality of local multilevel methods on adaptively refined meshes for elliptic boundary value problems. J. Numer. Math. 18 (2010) 59–90. [CrossRef] [MathSciNet] [Google Scholar]
  40. X. Xu, H. Chen and R.H.W. Hoppe, Optimality of local multilevel methods for adaptive nonconforming P1 finite element methods. J. Comput. Math. (2012), in press. [Google Scholar]
  41. L. Zhong, L. Chen and J. Xu, Convergence of adaptive edge finite element methods for H(curl)-elliptic problems. Numer. Lin. Algebra Appl. 17 (2009) 415–432. [Google Scholar]
  42. L. Zhong, L. Chen, S. Shu, G. Wittum and J. Xu, Quasi-optimal convergence of adaptive edge finite element methods for three dimensional indefinite time-harmonic Maxwell’s equations. Math. Comp. 81 (2012), 623–642. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you