Free Access
Issue |
ESAIM: M2AN
Volume 47, Number 1, January-February 2013
|
|
---|---|---|
Page(s) | 149 - 167 | |
DOI | https://doi.org/10.1051/m2an/2012026 | |
Published online | 31 July 2012 |
- S. Amat and S. Busquier, Third-order iterative methods under Kantorovich conditions. J. Math. Anal. Appl. 336 (2007) 243–261. [CrossRef] [Google Scholar]
- S. Amat, C. Bermúdez, S. Busquier and D. Mestiri, A family of Halley-Chebyshev iterative schemes for non-Fréechet differentiable operators. J. Comput. Appl. Math. 228 (2009) 486–493. [CrossRef] [Google Scholar]
- I.K. Argyros, A Newton–Kantorovich theorem for equations involving m-Fréchet differentiable operators and applications in radiative transfer. J. Comput. Appl. Math. 131 (2001) 149–159. [CrossRef] [Google Scholar]
- I.K. Argyros, An improved convergence analysis and applications for Newton-like methods in Banach space, Numer. Funct. Anal. Optim. 24 (2003) 653–572. [CrossRef] [MathSciNet] [Google Scholar]
- I.K. Argyros, On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 169 (2004) 315–332. [CrossRef] [Google Scholar]
- D.D. Bruns and J.E. Bailey, Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci. 32 (1977) 257–264. [CrossRef] [Google Scholar]
- K. Deimling, Nonlinear functional analysis. Springer-Verlag, Berlin (1985). [Google Scholar]
- J.A. Ezquerro and M.A. Hernández, Generalized differentiability conditions for Newton’s method. IMA J. Numer. Anal. 22 (2002) 187–205. [CrossRef] [MathSciNet] [Google Scholar]
- J.A. Ezquerro and M.A. Hernández, On an application of Newton’s method to nonlinear operators with ω-conditioned second derivative. BIT 42 (2002) 519–530. [MathSciNet] [Google Scholar]
- J.A. Ezquerro and M.A. Hernández, Halley’s method for operators with unbounded second derivative. Appl. Numer. Math. 57 (2007) 354–360. [CrossRef] [Google Scholar]
- J.A. Ezquerro, D. González and M.A. Hernández, Majorizing sequences for Newton’s method from initial value problems. J. Comput. Appl. Math. (submitted). [Google Scholar]
- M. Ganesh and M.C. Joshi, Numerical solvability of Hammerstein integral equations of mixed type. IMA J. Numer. Anal. 11 (1991) 21–31. [CrossRef] [MathSciNet] [Google Scholar]
- J.M. Gutiérrez, A new semilocal convergence theorem for Newton’s method. J. Comput. Appl. Math. 79 (1997) 131–145. [CrossRef] [Google Scholar]
- L.V. Kantorovich, On Newton’s method for functional equations. Dokl Akad. Nauk SSSR 59 (1948) 1237–1240 (in Russian). [Google Scholar]
- L.V. Kantorovich, The majorant principle and Newton’s method. Dokl. Akad. Nauk SSSR 76 (1951) 17–20 (in Russian). [Google Scholar]
- L.V. Kantorovich and G.P. Akilov, Functional analysis. Pergamon Press, Oxford (1982). [Google Scholar]
- A.M. Ostrowski, Solution of equations in Euclidean and Banach spaces. London, Academic Press (1943). [Google Scholar]
- F.A. Potra and V. Pták, Sharp error bounds for Newton process. Numer. Math. 34 (1980) 63–72. [CrossRef] [MathSciNet] [Google Scholar]
- J. Rashidinia and M. Zarebnia, New approach for numerical solution of Hammerstein integral equations. Appl. Math. Comput. 185 (2007) 147–154. [CrossRef] [Google Scholar]
- W.C. Rheinboldt, A unified convergence theory for a class of iterative processes. SIAM J. Numer. Anal. 5 (1968) 42–63. [CrossRef] [MathSciNet] [Google Scholar]
- T. Yamamoto, Convergence theorem for Newton-like methods in Banach spaces. Numer. Math. 51 (1987) 545–557. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Zhang, A note on weaker convergence conditions for Newton iteration. J. Zhejiang Univ. Sci. Ed. 30 (2003) 133–135, 144 (in Chinese). [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.