Free Access
Issue
ESAIM: M2AN
Volume 47, Number 1, January-February 2013
Page(s) 169 - 181
DOI https://doi.org/10.1051/m2an/2012024
Published online 31 August 2012
  1. T. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges, Math. Meth. Appl. Sci. 21 (1998) 519–549. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math. 87 (2000) 229–246. [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Buffa, M. Costabel and M. Dauge, Algebraic convergence for anisotropic edge elements in polyhedral domains. Numer. Math. 101 (2005) 29–65. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Caorsi, P. Fernandes and M. Raffetto, On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems, SIAM J. Numer. Anal. 38 (2000) 580–607. [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Caorsi, P. Fernandes and M. Raffetto, Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements. Math. Model. Numer. Anal. 35 (2001) 331–354. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  7. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, in Theory and Applications. Springer-Verlag, Berlin (1986). [Google Scholar]
  8. R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237–339. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989) 479–490. [MathSciNet] [Google Scholar]
  10. M. Krízek, On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992) 513–520. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. Leis, Initial Boundary Value Problems in Mathematical Physics. John Wiley, New York (1986). [Google Scholar]
  12. A.L. Lombardi, Interpolation error estimates for edge elements on anisotropic meshes. IMA J. Numer. Anal. 31 (2011) 1683–1712. [CrossRef] [MathSciNet] [Google Scholar]
  13. P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003). [Google Scholar]
  14. P. Monk and L. Demkowicz, Discrete compactness and the approximation of Maxwell’s equations in R3. Math. Comp. 70 (2001) 507–523. [CrossRef] [MathSciNet] [Google Scholar]
  15. J.C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet] [Google Scholar]
  16. S. Nicaise, Edge elements on anisotropic meshes and approximation of the Maxwell equations. SIAM J. Numer. Anal. 39 (2001) 784–816. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, edited by I. Galligani and E. Magenes. Lect. Notes Math. 606 (1977). [Google Scholar]
  18. Ch. Weber, A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci. 2 (1980) 12–25. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you