Free Access
Volume 47, Number 1, January-February 2013
Page(s) 169 - 181
Published online 31 August 2012
  1. T. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges, Math. Meth. Appl. Sci. 21 (1998) 519–549. [CrossRef] [MathSciNet]
  2. D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math. 87 (2000) 229–246. [CrossRef] [MathSciNet]
  3. D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. [CrossRef] [MathSciNet]
  4. A. Buffa, M. Costabel and M. Dauge, Algebraic convergence for anisotropic edge elements in polyhedral domains. Numer. Math. 101 (2005) 29–65. [CrossRef] [MathSciNet]
  5. S. Caorsi, P. Fernandes and M. Raffetto, On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems, SIAM J. Numer. Anal. 38 (2000) 580–607. [CrossRef] [MathSciNet]
  6. S. Caorsi, P. Fernandes and M. Raffetto, Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements. Math. Model. Numer. Anal. 35 (2001) 331–354. [CrossRef] [EDP Sciences] [MathSciNet]
  7. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, in Theory and Applications. Springer-Verlag, Berlin (1986).
  8. R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237–339. [CrossRef] [MathSciNet]
  9. F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989) 479–490. [MathSciNet]
  10. M. Krízek, On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992) 513–520. [CrossRef] [MathSciNet]
  11. R. Leis, Initial Boundary Value Problems in Mathematical Physics. John Wiley, New York (1986).
  12. A.L. Lombardi, Interpolation error estimates for edge elements on anisotropic meshes. IMA J. Numer. Anal. 31 (2011) 1683–1712. [CrossRef] [MathSciNet]
  13. P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003).
  14. P. Monk and L. Demkowicz, Discrete compactness and the approximation of Maxwell’s equations in R3. Math. Comp. 70 (2001) 507–523. [CrossRef] [MathSciNet]
  15. J.C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet]
  16. S. Nicaise, Edge elements on anisotropic meshes and approximation of the Maxwell equations. SIAM J. Numer. Anal. 39 (2001) 784–816. [CrossRef] [MathSciNet]
  17. P. A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, edited by I. Galligani and E. Magenes. Lect. Notes Math. 606 (1977).
  18. Ch. Weber, A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci. 2 (1980) 12–25. [CrossRef] [MathSciNet] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you