Free Access
Issue
ESAIM: M2AN
Volume 47, Number 1, January-February 2013
Page(s) 253 - 280
DOI https://doi.org/10.1051/m2an/2012027
Published online 29 November 2012
  1. I. Babuska, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800−825. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 1005−1034. [CrossRef] [MathSciNet] [Google Scholar]
  3. C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579−608. [CrossRef] [MathSciNet] [Google Scholar]
  4. P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219−268. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Buffa, Y. Maday, A.T. Patera, C. Prudhomme and G. Turinici, A priori convergence of the greedy algorithm for the parameterized reduced basis. ESAIM : M2AN 3 (2012) 595–603. [CrossRef] [EDP Sciences] [Google Scholar]
  6. A. Cohen, Numerical analysis of wavelet methods. Elsevier, Amsterdam (2003). [Google Scholar]
  7. A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for elliptic operator equations – Convergence rates. Math. Comput. 70 (2000) 27−75. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for operator equations – Beyond the elliptic case. J. FoCM 2 (2002) 203−245. [Google Scholar]
  9. A. Cohen, R. DeVore and C. Schwab, Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10 (2010) 615–646. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Cohen, R. DeVore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic PDE’s. Anal. Appl. 9 (2011) 11–47. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. DeVore, Nonlinear approximation. Acta Numer. 7 (1998) 51–150. [CrossRef] [Google Scholar]
  12. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet] [Google Scholar]
  13. Ph. Frauenfelder, Ch. Schwab and R.A. Todor, Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194 (2005) 205–228. [CrossRef] [MathSciNet] [Google Scholar]
  14. T. Gantumur, H. Harbrecht and R. Stevenson, An optimal adaptive wavelet method without coarsening of the iterands. Math. Comput. 76 (2007) 615–629. [CrossRef] [MathSciNet] [Google Scholar]
  15. R. Ghanem and P. Spanos, Spectral techniques for stochastic finite elements. Arch. Comput. Methods Eng. 4 (1997) 63–100. [CrossRef] [Google Scholar]
  16. P. Grisvard, Elliptic problems on non-smooth domains. Pitman (1983). [Google Scholar]
  17. V.H. Hoang and Ch. Schwab, Sparse tensor Galerkin discretizations for parametric and random parabolic PDEs I : Analytic regularity and gpc-approximation. Report 2010-11, Seminar for Applied Mathematics, ETH Zürich (in review). [Google Scholar]
  18. V.H. Hoang and Ch. Schwab, Analytic regularity and gpc approximation for parametric and random 2nd order hyperbolic PDEs. Report 2010-19, Seminar for Applied Mathematics, ETH Zürich (to appear in Anal. Appl. (2011)). [Google Scholar]
  19. M. Kleiber and T.D. Hien, The stochastic finite element methods. John Wiley & Sons, Chichester (1992). [Google Scholar]
  20. R. Milani, A. Quarteroni and G. Rozza, Reduced basis methods in linear elasticity with many parameters. Comput. Methods Appl. Mech. Eng. 197 (2008) 4812–4829. [CrossRef] [Google Scholar]
  21. P. Morin, R.H. Nochetto and K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466–488. [CrossRef] [MathSciNet] [Google Scholar]
  22. F. Nobile, R. Tempone and C.G. Webster, A sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2309–2345. [CrossRef] [MathSciNet] [Google Scholar]
  23. F. Nobile, R. Tempone and C.G. Webster, An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2411–2442. [CrossRef] [MathSciNet] [Google Scholar]
  24. Ch. Schwab and A.M. Stuart Sparse deterministic approximation of Bayesian inverse problems. Report 2011-16, Seminar for Applied Mathematics, ETH Zürich (to appear in Inverse Probl.). [Google Scholar]
  25. Ch. Schwab and R.A. Todor, Karhúnen-Loève, Approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217 (2000) 100–122. [CrossRef] [MathSciNet] [Google Scholar]
  26. R. Stevenson, Optimality of a standard adaptive finite element method. Found. Comput. Math. 7 (2007) 245–269. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you