Free Access
Volume 47, Number 1, January-February 2013
Page(s) 213 - 251
Published online 23 November 2012
  1. H. Antil, M. Heinkenschloss, R.H.W. Hoppe and D.C. Sorensen, Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables. Comput. Visualization Sci. 13 (2010) 249–264. [Google Scholar]
  2. H. Antil, M. Heinkenschloss and R.H.W. Hoppe, Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system. Optim. Methods Softw. 26 (2011) 643–669, doi: 10.1080/10556781003767904. [Google Scholar]
  3. J.K. Bennighof and R.B. Lehoucq. An automated multilevel substructuring method for eigenspace computation in linear elastodynamics. SIAM J. Sci. Comput. 25 (2004) 2084–2106. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Bermúdez and F. Pena, Galerkin lumped parameter methods for transient problems. Int. J. Numer. Methods Eng. 87 (2011) 943–961, doi: 10.1002/nme.3140. [CrossRef] [Google Scholar]
  5. P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. Technical Report, Aachen Institute for Advanced Study in Computational Engineering Science, preprint : AICES-2010/05-2 (2010). [Google Scholar]
  6. F. Bourquin, Component mode synthesis and eigenvalues of second order operators : discretization and algorithm. ESAIM : M2AN 26 (1992) 385–423. [Google Scholar]
  7. S.C. Brenner, The condition number of the Schur complement in domain decompostion. Numer. Math. 83 (1999) 187–203. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis. To appear in ESAIM : M2AN (2010). [Google Scholar]
  9. Y. Chen, J.S. Hesthaven and Y. Maday, A Seamless Reduced Basis Element Methods for 2D Maxwell’s Problem : An Introduction, edited by J. Hesthaven and E.M. Rønquist, in Spectral and High Order Methods for Partial Differential Equations-Selected papers from the ICASOHOM’09 Conference 76 (2011). [Google Scholar]
  10. R. Craig and M. Bampton, Coupling of substructures for dynamic analyses. AIAA J. 6 (1968) 1313–1319. [CrossRef] [Google Scholar]
  11. J.L. Eftang, D.B.P. Huynh, D.J. Knezevic, E.M. Rønquist and A.T. Patera, Adaptive port reduction in static condensation, in MATHMOD 2012 – 7th Vienna International Conference on Mathematical Modelling (2012) (Submitted). [Google Scholar]
  12. M. Ganesh, J.S. Hesthaven and B. Stamm, A reduced basis method for multiple electromagnetic scattering in three dimensions. Technical Report 2011-9, Scientific Computing Group, Brown University, Providence, RI, USA (2011). [Google Scholar]
  13. G. Golub and C. van Loan, Matrix Computations. Johns Hopkins University Press (1996). [Google Scholar]
  14. B. Haggblad and L. Eriksson, Model reduction methods for dynamic analyses of large structures. Comput. Struct. 47 (1993) 735–749. [CrossRef] [Google Scholar]
  15. U.L. Hetmaniuk and R.B. Lehoucq, A special finite element method based on component mode synthesis. ESAIM : M2AN 44 (2010) 401–420. [CrossRef] [EDP Sciences] [Google Scholar]
  16. T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [CrossRef] [MathSciNet] [Google Scholar]
  17. W.C. Hurty, On the dynamic analysis of structural systems using component modes, in First AIAA Annual Meeting. Washington, DC, AIAA paper, No. 64-487 (1964). [Google Scholar]
  18. D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. 345 (2007) 473–478. [Google Scholar]
  19. L. Iapichino, Quarteroni and G.A., Rozza, A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Comput. Methods Appl. Mech. Eng. 221-222 (2012) 63–82. [CrossRef] [Google Scholar]
  20. H. Jakobsson, F. Beingzon and M.G. Larson, Adaptive component mode synthesis in linear elasticity. Int. J. Numer. Methods Eng. 86 (2011) 829–844. [CrossRef] [Google Scholar]
  21. S. Kaulmann, M. Ohlberger and B. Haasdonk, A new local reduced basis discontinuous galerkin approach for heterogeneous multiscale problems. C. R. Math. 349 (2011) 1233–1238. [Google Scholar]
  22. B.S. Kirk, J.W. Peterson, R.H. Stogner and G.F. Carey, libMesh : A C++ library for Parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22 (2006) 237–254. [CrossRef] [Google Scholar]
  23. D.J. Knezevic and J.W. Peterson, A high-performance parallel implementation of the certified reduced basis method. Comput. Methods Appl. Mech. Eng. 200 (2011) 1455–1466. [CrossRef] [Google Scholar]
  24. Y Maday and EM Rønquist, The reduced basis element method : Application to a thermal fin problem. SIAM J. Sci. Comput. 26 (2004) 240–258. [Google Scholar]
  25. Y. Maday, A.T. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J. Sci. Comput. 17 (2002) 437–446. [CrossRef] [MathSciNet] [Google Scholar]
  26. N.C. Nguyen, A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales. J. Comput. Phys. 227 (2007) 9807–9822. [CrossRef] [Google Scholar]
  27. C. Prud’homme, D. Rovas, K. Veroy, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations : Reduced-basis output bounds methods. J. Fluids Eng. 124 (2002) 70–80. [Google Scholar]
  28. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15 (2008) 229–275. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you