Free Access
Volume 47, Number 1, January-February 2013
Page(s) 213 - 251
Published online 23 November 2012
  1. H. Antil, M. Heinkenschloss, R.H.W. Hoppe and D.C. Sorensen, Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables. Comput. Visualization Sci. 13 (2010) 249–264. [CrossRef] [MathSciNet]
  2. H. Antil, M. Heinkenschloss and R.H.W. Hoppe, Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system. Optim. Methods Softw. 26 (2011) 643–669, doi: 10.1080/10556781003767904. [CrossRef]
  3. J.K. Bennighof and R.B. Lehoucq. An automated multilevel substructuring method for eigenspace computation in linear elastodynamics. SIAM J. Sci. Comput. 25 (2004) 2084–2106. [CrossRef] [MathSciNet]
  4. A. Bermúdez and F. Pena, Galerkin lumped parameter methods for transient problems. Int. J. Numer. Methods Eng. 87 (2011) 943–961, doi: 10.1002/nme.3140. [CrossRef]
  5. P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. Technical Report, Aachen Institute for Advanced Study in Computational Engineering Science, preprint : AICES-2010/05-2 (2010).
  6. F. Bourquin, Component mode synthesis and eigenvalues of second order operators : discretization and algorithm. ESAIM : M2AN 26 (1992) 385–423.
  7. S.C. Brenner, The condition number of the Schur complement in domain decompostion. Numer. Math. 83 (1999) 187–203. [CrossRef] [MathSciNet]
  8. A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis. To appear in ESAIM : M2AN (2010).
  9. Y. Chen, J.S. Hesthaven and Y. Maday, A Seamless Reduced Basis Element Methods for 2D Maxwell’s Problem : An Introduction, edited by J. Hesthaven and E.M. Rønquist, in Spectral and High Order Methods for Partial Differential Equations-Selected papers from the ICASOHOM’09 Conference 76 (2011).
  10. R. Craig and M. Bampton, Coupling of substructures for dynamic analyses. AIAA J. 6 (1968) 1313–1319. [CrossRef]
  11. J.L. Eftang, D.B.P. Huynh, D.J. Knezevic, E.M. Rønquist and A.T. Patera, Adaptive port reduction in static condensation, in MATHMOD 2012 – 7th Vienna International Conference on Mathematical Modelling (2012) (Submitted).
  12. M. Ganesh, J.S. Hesthaven and B. Stamm, A reduced basis method for multiple electromagnetic scattering in three dimensions. Technical Report 2011-9, Scientific Computing Group, Brown University, Providence, RI, USA (2011).
  13. G. Golub and C. van Loan, Matrix Computations. Johns Hopkins University Press (1996).
  14. B. Haggblad and L. Eriksson, Model reduction methods for dynamic analyses of large structures. Comput. Struct. 47 (1993) 735–749. [CrossRef]
  15. U.L. Hetmaniuk and R.B. Lehoucq, A special finite element method based on component mode synthesis. ESAIM : M2AN 44 (2010) 401–420. [CrossRef] [EDP Sciences]
  16. T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [CrossRef] [MathSciNet]
  17. W.C. Hurty, On the dynamic analysis of structural systems using component modes, in First AIAA Annual Meeting. Washington, DC, AIAA paper, No. 64-487 (1964).
  18. D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. 345 (2007) 473–478. [CrossRef] [MathSciNet]
  19. L. Iapichino, Quarteroni and G.A., Rozza, A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Comput. Methods Appl. Mech. Eng. 221-222 (2012) 63–82. [CrossRef]
  20. H. Jakobsson, F. Beingzon and M.G. Larson, Adaptive component mode synthesis in linear elasticity. Int. J. Numer. Methods Eng. 86 (2011) 829–844. [CrossRef]
  21. S. Kaulmann, M. Ohlberger and B. Haasdonk, A new local reduced basis discontinuous galerkin approach for heterogeneous multiscale problems. C. R. Math. 349 (2011) 1233–1238. [CrossRef] [MathSciNet]
  22. B.S. Kirk, J.W. Peterson, R.H. Stogner and G.F. Carey, libMesh : A C++ library for Parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22 (2006) 237–254. [CrossRef]
  23. D.J. Knezevic and J.W. Peterson, A high-performance parallel implementation of the certified reduced basis method. Comput. Methods Appl. Mech. Eng. 200 (2011) 1455–1466. [CrossRef]
  24. Y Maday and EM Rønquist, The reduced basis element method : Application to a thermal fin problem. SIAM J. Sci. Comput. 26 (2004) 240–258. [CrossRef] [MathSciNet]
  25. Y. Maday, A.T. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J. Sci. Comput. 17 (2002) 437–446. [CrossRef] [MathSciNet]
  26. N.C. Nguyen, A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales. J. Comput. Phys. 227 (2007) 9807–9822. [CrossRef]
  27. C. Prud’homme, D. Rovas, K. Veroy, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations : Reduced-basis output bounds methods. J. Fluids Eng. 124 (2002) 70–80. [CrossRef]
  28. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15 (2008) 229–275. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you