Free Access
Issue
ESAIM: M2AN
Volume 47, Number 1, January-February 2013
Page(s) 281 - 304
DOI https://doi.org/10.1051/m2an/2012028
Published online 23 November 2012
  1. G. Akrivis and M. Crouzeix, Linearly implicit methods for nonlinear parabolic equations. Math. Comput. 73 (2004) 613–635. [Google Scholar]
  2. G. Akrivis and C. Makridakis, Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM : M2AN 38 (2004) 261–289. [CrossRef] [EDP Sciences] [Google Scholar]
  3. G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comput. 67 (1998) 457–477. [CrossRef] [MathSciNet] [Google Scholar]
  4. C. Chiu and N.J. Walkington, An ADI method for hysteric reaction-diffusion systems. SIAM J. Numer. Anal. 34 (1997) 1185–1206. [CrossRef] [MathSciNet] [Google Scholar]
  5. K. Chrysafinos and N.J. Walkington, Error estimates for the discontinuous Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 44 (2006) 349–366. [CrossRef] [MathSciNet] [Google Scholar]
  6. K. Chrysafinos and N.J. Walkington, Lagrangian and moving mesh methods for the convection diffusion equation. ESAIM : M2AN 42 (2008) 27–56. [CrossRef] [EDP Sciences] [Google Scholar]
  7. K. Chrysafinos and N.J. Walkington, Discontinous Galerkin approximations of the Stokes and Navier–Stokes problem. Math. Comput. 79 (2010) 2135–2167. [CrossRef] [Google Scholar]
  8. P.G. Ciarlet, The finite element method for elliptic problems. SIAM Classics Appl. Math. (2002). [Google Scholar]
  9. M. Delfour, W. Hager and F. Trochu, Discontinuous Galerkin methods for ordinary differential equations. Math. Comput. 36 (1981) 455–473. [CrossRef] [Google Scholar]
  10. S, Descombes and M. Ribot, Convergence of the Peaceman–Rachford approximation for reaction-diffusion systems. Numer. Math. 95 (2003) 503–525. [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77. [CrossRef] [MathSciNet] [Google Scholar]
  12. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. II. Optimal error estimates in L(L2) and L(L). SIAM J. Numer. Anal. 32 (1995) 706–740. [CrossRef] [MathSciNet] [Google Scholar]
  13. K. Ericksson and C. Johnson, Adaptive finite element methods for parabolic problems IV : Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729–1749. [CrossRef] [MathSciNet] [Google Scholar]
  14. K. Eriksson, C. Johnson and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method. ESAIM : M2AN 29 (1985) 611–643. [Google Scholar]
  15. D. Estep and S. Larsson, The discontinuous Galerkin method for semilinear parabolic equations. ESAIM : M2AN 27 (1993) 35–54. [Google Scholar]
  16. D. Estep, M. Larson and R. Williams, Estimating the error of numerical solutions of systems of reaction-diffusion equations. Mem. Amer. Math. Soc. 146 (2000) viii+109. [Google Scholar]
  17. L. Evans, Partial Differential Equations. AMS, Providence, RI (1998). [Google Scholar]
  18. P. Fife, Mathematical aspects of reacting and diffusing systems. Lect. Notes Biomath. 28 (1978). [Google Scholar]
  19. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1 (1961) 445–466. [CrossRef] [PubMed] [Google Scholar]
  20. P. Franzone, P. Deflhard, B. Erdmann, J. Lang and L. Pavarino, Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28 (2006) 942–962. [CrossRef] [MathSciNet] [Google Scholar]
  21. M.R. Garvie and J.M. Blowey, A reaction-diffusion system of λω type. Part II : Numerical analysis. Eur. J. Appl. Math. 16 (2005) 621–646. [CrossRef] [Google Scholar]
  22. M.R. Garvie and C. Trenchea, Finite element approximation of spatially extended predator interactions with the Holling type II functional response. Numer. Math. 107 (2008) 641–667. [CrossRef] [Google Scholar]
  23. V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes. Springer-Verlag, New York (1986). [Google Scholar]
  24. M.D. Gunzburger, L.S. Hou and W. Zhu, Fully discrete finite element approximation of the forced Fisher equation. J. Math. Anal. Appl. 313 (2006) 419–440. [CrossRef] [Google Scholar]
  25. E. Hansen and A. Ostermann, Dimension splitting for evolution equations. Numer. Math. 108 (2008) 557–570. [CrossRef] [MathSciNet] [Google Scholar]
  26. S.P. Hastings, Some mathematical models from neurobiology. Amer. Math. Monthly 82 (1975) 881–895. [CrossRef] [MathSciNet] [Google Scholar]
  27. W. Hundsdorfer and J. Verwer, Numerical solution for time-dependent advection-diffusion-reaction equations. Springer-Verlag, Berlin (2003). [Google Scholar]
  28. D. Jackson, Existence and regularity for the FitzHugh–Nagumo equations with inhomogeneous boundary conditions. Nonlinear Anal. Theory Methods Appl. 14 (1990) 201–216. [CrossRef] [Google Scholar]
  29. D. Jackson, Error estimates for the semidiscrete Galerkin approximations of the FitzHugh–Nagumo equations. Appl. Math. Comput. 50 (1992) 93–114. [CrossRef] [Google Scholar]
  30. P. Jamet, Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15 (1978) 912–928. [CrossRef] [MathSciNet] [Google Scholar]
  31. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge (1987). [Google Scholar]
  32. P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, in Mathematical aspects of finite elements in partial differential equations, edited by C. de Boor. Academic Press, New York (1974) 89–123. [Google Scholar]
  33. D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I : Problems without control constraints. SIAM J. Control. Optim. 47 (2008) 1150–1177. [CrossRef] [MathSciNet] [Google Scholar]
  34. C. Nagaiah, K. Kunisch and G. Plank, Numerical solution for optimal control problems of the reaction diffusion equations in cardiac electrophysiology. Comput. Optim. Appl. 49 (2011) 149–178. [CrossRef] [Google Scholar]
  35. J.S. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE 50 (1962) 2061–2070. [CrossRef] [Google Scholar]
  36. C.S. Peskin, Partial Differential Equations in Biology. Courant Institute of Mathematical Sciences, New York (1975). [Google Scholar]
  37. M.E. Schoenbek, Boundary value problems for the FitzHugh–Nagumo equations. J. Differ. Equ. 30 (1978) 119–147. [CrossRef] [Google Scholar]
  38. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci. 68 (1997). [Google Scholar]
  39. C. Theodoropoulos, Y.-H. Qian and I.G. Kevrekidis, “Coarse” stability and bifurcation analysis using time-steppers : a reaction-diffusion example. Proc. Natl. Acad. Sci. USA 97 (2000) 9840–9843. [CrossRef] [Google Scholar]
  40. V. Thomée, Galerkin finite element methods for parabolic problems. Spinger-Verlag, Berlin (1997). [Google Scholar]
  41. N.J. Walkington, Compactness properties of CG and DG schemes. SIAM J. Numer. Anal. 47 (2010) 4680–4710. [CrossRef] [MathSciNet] [Google Scholar]
  42. E. Zeidler, Nonlinear functional analysis and its applications, in II/B Nonlinear monotone operators. Springer-Verlag, New York (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you