Free Access
Issue
ESAIM: M2AN
Volume 47, Number 3, May-June 2013
Page(s) 859 - 873
DOI https://doi.org/10.1051/m2an/2012045
Published online 17 April 2013
  1. P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. IGPM Report, RWTH Aachen 310 (2010). [Google Scholar]
  2. A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis. Math. Model. Numer. Anal. submitted (2009). [Google Scholar]
  3. R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification. Wiley Interscience, 2nd edition (2001). [Google Scholar]
  4. J.L. Eftang, D. Knezevic and A.T. Patera, An hp certified reduced basis method for parametrized parabolic partial differential equations. MCMDS, Math. Comput. Model. Dynamical Systems 17 (2011) 395–422. [Google Scholar]
  5. M.A. Grepl, Reduced-basis Approximations and a Posteriori Error Estimation for Parabolic Partial Differential Equations. Ph.D. Thesis. Massachusetts Inst. Techn. (2005). [Google Scholar]
  6. B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: M2AN 42 (2008) 277–302. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  7. M. Hinze and S. Volkwein, Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl. 39 (2008) 319–345. [Google Scholar]
  8. P. Holmes, J. Lumley and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996). [Google Scholar]
  9. H. Hotelling, Analysis of a complex of statistical variables into principal components. J. Educational Psychol. (1933). [Google Scholar]
  10. R.S. Ismagilov, On n-dimensional diameters of compacts in a Hilbert space. Functional Anal. Appl. 2 (1968) 125–132. [CrossRef] [Google Scholar]
  11. I.T. Joliffe, Principal Component Analysis. John Wiley and Sons (2002). [Google Scholar]
  12. K. Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Annal. Acad. Sri. Fennicae, Ser. A l . Math. Phys. 37 (1946). [Google Scholar]
  13. D.J. Knezevic and A.T. Patera, A certified reduced basis method for the Fokker-Planck equation of dilute polymeric fluids: FENE dumbbells in extensional flow. SIAM J. Sci. Comput. 32 (2010) 793–817. [CrossRef] [Google Scholar]
  14. K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90 (2001) 117–148. [CrossRef] [MathSciNet] [Google Scholar]
  15. M.M. Loeve, Probability Theory. Van Nostrand, Princeton, NJ (1955). [Google Scholar]
  16. Y. Maday, A.T. Patera and G. Turinici, a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptiv partial differential equations. C.R. Acad Sci. Paris, Der. I 335 (2002) 289–294. [Google Scholar]
  17. Y. Makovoz, On n-widths of certain functional classes defined by linear differential operators. Proc. Amer. Math. Soc. 89 (1983) 109–112. [MathSciNet] [Google Scholar]
  18. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Meth. Engrg. 15 (2008) 229–275. [Google Scholar]
  19. L. Sirovich, Turbulence and the dynamics of coherent structures I. coherent structures. Quart. Appl. Math. 45 (1987) 561–571. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  20. S.B. Stechkin, On the best approximation of given classes of functions by arbitrary polynomials. Uspekhi Matematicheskikh Nauk 9 (1954) 133–134. [Google Scholar]
  21. K. Urban and A.T. Patera, A new error bound for reduced basis approximation of parabolic partial differential equations. CRAS, Comptes Rendus Math. 350 (2012) 203–207. [Google Scholar]
  22. K. Veroy, C. Prud’homme, D.V. Rovas and A.T. Patera, A posteriori error bounds for reduced–basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In Proc. 16th AIAA computational fluid dynamics conference (2003) 2003–3847. [Google Scholar]
  23. S. Volkwein, Model Reduction using Proper Orthogonal Decomposition, Lect. Notes. University of Constance (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you