Free Access
Issue
ESAIM: M2AN
Volume 47, Number 3, May-June 2013
Page(s) 875 - 902
DOI https://doi.org/10.1051/m2an/2013065
Published online 17 April 2013
  1. R. Acevedo, S. Meddahi and R. Rodríguez, An E-based mixed formulation for a time-dependent eddy current problem. Math. Comput. 78 (2009) 1929–1949. [CrossRef] [Google Scholar]
  2. A. Alonso Rodríguez, R. Hiptmair and A. Valli, A hybrid formulation of eddy current problems. Numer. Methods Part. Differ. Equ. 21 (2005) 742-763. [CrossRef] [Google Scholar]
  3. A. Alonso Rodríguez, R. Hiptmair and A. Valli, Mixed finite element approximation of eddy current problems. IMA J. Numer. Anal. 24 (2004) 255–271. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Alonso and A. Valli, An optimal decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comput. 68 (1999) 607–631. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Alonso and A. Valli, Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications. Springer–Verlag, Italia (2010). [Google Scholar]
  6. A. Alonso Rodríguez and A. Valli, Voltage and current excitation for time-harmonic eddy-current problems. SIAM J. Appl. Math. 68 (2008) 1477–1494. [CrossRef] [Google Scholar]
  7. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Beranúdez, B. López-Rodríguez, R. Rodríguez and P. Salgado, Equivalence between two finite element methods for the eddy current problem. C. R. Math. Acad. Sci. Paris, Series I 34 (2010) 769–774. [CrossRef] [Google Scholar]
  9. A. Bermúdez, B. López-Rodríguez, R. Rodríguez and P. Salgado, Numerical solution of transient eddy current problems with input current intensities as boundary data. IMA J. Numer. Anal. 32 (2012) 1001–1029. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Bermúdez, R. Rodríguez and P. Salgado, A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations. SIAM J. Numer. Anal. 40 (2002) 1823–1849. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Bermúdez, R. Rodríguez and P. Salgado, Numerical analysis of electric field formulations of the eddy current model. Numer. Math. 102 (2005) 181–201. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Bossavit, Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements. Academic Press, San Diego (1998). [Google Scholar]
  13. A. Bossavit, Most general non-local boundary conditions for the Maxwell equation in a bounded region. COMPEL 19 (2000) 239–245. [MathSciNet] [Google Scholar]
  14. A. Buffa, M. Costabel and D. Sheen, On traces for H(curl;Ω) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–876. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Buffa, Y. Maday and F. Rapetti, Applications of the mortar element method to 3D electromagnetic moving structures. Computational Electromagnetics, edited by C. Carstensen et al., Springer Verlag. Lect. Notes Comput. Sci. Eng. 28 (2003) 35–50. [CrossRef] [Google Scholar]
  16. C.R.I. Emson, and J. Simkin, An optimal method for 3D eddy currents. IEEE Trans. Magn. 19 (1983) 2450–2452. [CrossRef] [Google Scholar]
  17. P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957–991. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Fernandes and I. Perugia, Vector potential formulation for magnetostatic and modelling of permanent magnets. IMA J. Appl. Math. 66 (2001) 293–318. [CrossRef] [MathSciNet] [Google Scholar]
  19. V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer–Verlag, Berlin (1986). [Google Scholar]
  20. R. Hiptmair and O. Sterz, Current and voltage excitations for the eddy current model. Int. J. Numer. Model. 18 (2005) 1–21. [CrossRef] [Google Scholar]
  21. A. Kameari, Calculation of transient 3D eddy currents using edge elements. IEEE Trans. Magn. 26 (1990) 466–469. [CrossRef] [Google Scholar]
  22. A. Kameari, Three dimensional eddy current calculation using edge elements for magnetic vector potential. Applied Electromagnetic in Materials, Pergamon Press, Oxford (1988) 225–236. [Google Scholar]
  23. T. Kang, T. Chen, H. Zhang and K.I. Kim, Improved Tψ nodal finite element schemes for eddy current problems. Appl. Math. Comput. 218 (2011) 287–302. [CrossRef] [Google Scholar]
  24. C. Ma, The finite element analysis of a decoupled TΨ scheme for solving eddy-current problems. Appl. Math. Comput. 205 (2008) 352–361. [CrossRef] [Google Scholar]
  25. G. Pichenot, F. Buvat, V. Maillot and H. Voillaume, Eddy current modelling for non destructive testing. Proc. of 16th World Conf. on NDT, Rapport DSR 31. Montreal, August 30 - September 3 (2004). [Google Scholar]
  26. B. Weiß and O. Bíró, On the convergence of transient eddy-current problems. IEEE Trans. Magn. 40 (2004) 957–960. [CrossRef] [Google Scholar]
  27. A. Žensíšek, Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. London, Academic Press (1990). [Google Scholar]
  28. W. Zheng, Z. Chen and L. Wang, An adaptive finite element method for the H-ψ formulation of time-dependent eddy current problems. Numer. Math. 103 (2006) 667–689. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you