Volume 47, Number 4, July-August 2013
Direct and inverse modeling of the cardiovascular and respiratory systems
Page(s) 1059 - 1075
Published online 13 June 2013
  1. B. Trachet, M. Renard, G. De Santis, S. Staelens, J. De Backer, L. Antiga, B. Loeys and P. Segers, An integrated framework to quantitatively link mouse-specific hemodynamics to aneurysm formation in angiotensin II-infused ApoE -/- mice. Annal. Biomed. Eng. 39 (2011) 2430–2444. [CrossRef] [Google Scholar]
  2. H.J. Kim, I.E. Vignon-Clementel, C.A. Figueroa, J.F. LaDisa, K.E. Jansen, J.A. Feinstein and C.A. Taylor, On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Annal. Biomed. Eng. 37 (2009) 2153–2169. [CrossRef] [Google Scholar]
  3. J. Degroote, I. Couckuyt, J. Vierendeels, P. Segers and T. Dhaene, Inverse modelling of an aneurysms stiffness using surrogate-based optimization and fluid-structure interaction simulations. Struct. Multidiscip. Optim. (2012) 1–13. [Google Scholar]
  4. J. Lu, X. Zhou and M.L. Raghavan, Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms. J. Biomech. 40 (2007) 693–6. [CrossRef] [PubMed] [Google Scholar]
  5. S. de Putter, B.J.B.M. Wolters, M.C.M. Rutten, M. Breeuwer, F.A. Gerritsen and F.N. van de Vosse, Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 40 (2007) 1081–1090. [CrossRef] [PubMed] [Google Scholar]
  6. M.W. Gee, C. Reeps, H.H. Eckstein and W.A. Wall, Prestressing in finite deformation abdominal aortic aneurysm simulation. J. Biomech. 42 (2009) 1732–1739. [CrossRef] [PubMed] [Google Scholar]
  7. L. Speelman, E.M.H. Bosboom, G.W.H. Schurink, J. Buth, M. Breeuwer, M.J. Jacobs and F.N. van de Vosse, Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis. J. Biomech. 42 (2009) 1713–1719. [CrossRef] [PubMed] [Google Scholar]
  8. M.A.G. Merkx, M. van ’t Veer, L. Speelman, M. Breeuwer, J. Buth and F.N. van de Vosse, Importance of initial stress for abdominal aortic aneurysm wall motion: Dynamic MRI validated finite element analysis. J. Biomech. 42 (2009) 2369–2373. [CrossRef] [PubMed] [Google Scholar]
  9. S. Govindjee and P.A. Mihalic, Computational methods for inverse finite elastostatics. Comput. Methods Appl. Mech. Eng. 136 (1996) 47–57. [Google Scholar]
  10. S. Govindjee and P.A. Mihalic, Computational methods for inverse deformations in quasi-incompressible finite elasticity. Inter. J. Numer. Methods Eng. 43 (1998) 821–838. [CrossRef] [Google Scholar]
  11. V.D. Fachinotti, A. Cardona and P. Jetteur, Finite element modelling of inverse design problems in large deformations anisotropic hyperelasticity. Inter. J. Numer. Methods Eng. 74 (2008) 894–910. [CrossRef] [Google Scholar]
  12. R. Haelterman, J. Degroote, D. Van Heule and J. Vierendeels, The quasi-newton least squares method: A new and fast secant method analyzed for linear systems. SIAM J. Numer. Anal. 47 (2009) 2347–2368. [CrossRef] [Google Scholar]
  13. J. Degroote, K.J. Bathe and J. Vierendeels, Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct. 87 (2009) 793–801. [CrossRef] [Google Scholar]
  14. R. Haelterman, J. Degroote, D. Van Heule and J. Vierendeels, On the similarities between the quasi-newton inverse least squares method and GMRes. SIAM J. Numer. Anal. 47 (2010) 4660–4679. [CrossRef] [Google Scholar]
  15. J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman and J. Vierendeels. Performance of partitioned procedures in fluid-structure interaction. Comput. Struct. 88 (2010) 446–457. [CrossRef] [Google Scholar]
  16. M.L. Raghavan, B. Ma and M. Fillinger, Non-invasive determination of zero-pressure geometry of arterial aneurysms. Annal. Biomedical Eng. 34 (2006) 1414–1419. [CrossRef] [Google Scholar]
  17. M.W. Gee, Ch. Förster and W.A. Wall, A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Inter. J. Numer. Methods Biomedical Eng. 26 (2010) 52–72. [CrossRef] [Google Scholar]
  18. V. Alastrué, A. Garía, E. Peña, J.F. Rodríguez, M.A. Martínez and M. Doblaré, Numerical framework for patient-specific computational modelling of vascular tissue. Inter. J. Numer. Methods Biomedical Eng. 26 (2010) 35–51. [CrossRef] [Google Scholar]
  19. L. Speelman, A.C. Akyildiz, B. den Adel, J.J. Wentzel, A.F.W. van der Steen, R. Virmani, L. van der Weerd, J.W. Jukema, R.E. Poelmann, E.H. van Brummelen and F.J.H. Gijsen, Initial stress in biomechanical models of atherosclerotic plaques. J. Biomech. 44 (2011) 2376–2382. [CrossRef] [PubMed] [Google Scholar]
  20. P. M. Pinsky, D. van der Heide and D. Chernyak, Computational modeling of mechanical anisotropy in the cornea and sclera. J. Cataract Refract. Surg. 31 (2005) 136–45. [CrossRef] [PubMed] [Google Scholar]
  21. Y. Bazilevs, M.C. Hsu, Y. Zhang, W. Wang, T. Kvamsdal, S. Hentschel and J. Isaksen, Computational vascular fluid-structure interaction: methodology and application to cerebral aneurysms. Biomech. Model. Mechanobiol. 9 (2010) 481–498. [CrossRef] [PubMed] [Google Scholar]
  22. M. C. Hsu and Y. Bazilevs, Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation. Finite Elem. Anal. Des. 47 (2011) 593–599. [CrossRef] [Google Scholar]
  23. P.J. Prendergast, C. Lally, S. Daly, A.J. Reid, T.C. Lee, D. Quinn and F. Dolan, Analysis of prolapse in cardiovascular stents: A constitutive equation for vascular tissue and finite-element modelling. J. Biomech. Eng. 125 (2003) 692–699. [CrossRef] [PubMed] [Google Scholar]
  24. [Google Scholar]
  25. G. De Santis, M. De Beule, K. Van Canneyt, P. Segers, P. Verdonck and B. Verhegghe, Full-hexahedral structured meshing for image-based computational vascular modeling. Medical Eng. Phys. 33 (2011) 1318–1325. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you