Issue
ESAIM: M2AN
Volume 47, Number 4, July-August 2013
Direct and inverse modeling of the cardiovascular and respiratory systems
Page(s) 1077 - 1106
DOI https://doi.org/10.1051/m2an/2012058
Published online 13 June 2013
  1. B. Ainseba, M. Bendahmane and R. Ruiz-Baier, Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology. J. Math. Anal. Appl. 388 (2012) 231–247. [CrossRef] [Google Scholar]
  2. R.R. Aliev and A.V. Panfilov, A simple two-variable model of cardiac excitation. Chaos, Solitons and Fractals 7 (1996) 293–301. [CrossRef] [Google Scholar]
  3. M.S. Berger, Nonlinearity and Functional Analysis. Academic Press, New York, San Francisco, London (1977). [Google Scholar]
  4. Y. Bourgault, Y. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Analysis: Real World Appl. 10 (2009) 458–482. [CrossRef] [MathSciNet] [Google Scholar]
  5. A.J.V. Brandaõ, E. Fernández-Cara, P.M.D. Magalhães and M.A. Rojas-Medar, Theoretical analysis and control results for the FitzHugh–Nagumo equation. Electron. J. Differ. Eq. (2008) 1–20. [Google Scholar]
  6. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer, New York (2008). [Google Scholar]
  7. L.C. Evans, Partial Differential Equations. Amer. Math. Soc. Providence (1998). [Google Scholar]
  8. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1 (1961) 445–466. [CrossRef] [PubMed] [Google Scholar]
  9. K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008). [Google Scholar]
  10. K. Kunisch, C. Nagaiah and M. Wagner, A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology. Comput. Visualiz. Sci. 14 (2011) [2012], 257–269. [CrossRef] [Google Scholar]
  11. K. Kunisch and M. Wagner, Optimal control of the bidomain system (I): The monodomain approximation with the Rogers–McCulloch model. Nonlinear Anal.: Real World Appl. 13 (2012) 1525–1550. [CrossRef] [MathSciNet] [Google Scholar]
  12. K. Kunisch and M. Wagner, Optimal control of the bidomain system (II): Uniqueness and regularity theorems. University of Graz, Institute for Mathematics and Scientific Computing, SFB-Report No. 2011–008 (to appear: Ann. Mat. Pura Appl.) [Google Scholar]
  13. S. Muzdeka and E. Barbieri, Control theory inspired considerations for the mathematical model defibrillation, in Proc. of the 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference 7416–7421. [Google Scholar]
  14. C. Nagaiah and K. Kunisch, Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology. Appl. Num. Math. 61 (2011) 53–65. [CrossRef] [Google Scholar]
  15. C. Nagaiah, K. Kunisch and G. Plank, Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology. Comput. Optim. Appl. 49 (2011) 149–178. [CrossRef] [Google Scholar]
  16. C. Nagaiah, K. Kunisch and G. Plank, Optimal control approach to termination of re-entry waves in cardiac electrophysiology. University of Graz, Institute for Mathematics and Scientific Computing, SFB-Report No. 2011–020 (to appear: J. Math. Biol., doi: 10.1007/s00285-012-0557-2) [Google Scholar]
  17. J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. Institute of Radio Engineers 50 (1962) 2061–2070. [Google Scholar]
  18. J.M. Rogers and A.D. McCulloch, A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Engrg. 41 (1994) 743–757. [CrossRef] [PubMed] [Google Scholar]
  19. S. Rolewicz, Funktionalanalysis und Steuerungstheorie. Springer, Berlin, Heidelberg, New York (1976). [Google Scholar]
  20. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A.Mardal and A. Tveito, Computing the Electrical Activity in the Heart. Springer, Berlin (2006). [Google Scholar]
  21. L. Tung, A Bi-Domain Model for Describing Ischemic Myocardial D-C Potentials. Ph.D. thesis. Massachusetts Institute of Technology (1978). [Google Scholar]
  22. M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Analysis: Real World Appl. 10 (2009) 849–868. [CrossRef] [MathSciNet] [Google Scholar]
  23. J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York, London (1972). [Google Scholar]
  24. K. Yosida, Functional Analysis. Springer, Berlin (1995) (reprint of the 6th edn. from 1980). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you