Free Access
Volume 47, Number 4, July-August 2013
Page(s) 1133 - 1165
Published online 17 June 2013
  1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Academic Press, Amsterdam (2003). [Google Scholar]
  2. G. Aronson, L.C. Evans and Y. Wu, Fast/slow diffusion and growing sandpiles. J. Differ. Eqn. 131 (1996) 304–335. [Google Scholar]
  3. C. Bahriawati and C. Carstensen, Three Matlab implementations of the lowest-order Raviart–Thomas MFEM with a posteriori error control. Comput. Methods Appl. Math. 5 (2005) 333–361. [Google Scholar]
  4. J.W. Barrett and L. Prigozhin, Dual formulations in critical state problems. Interfaces Free Bound. 8 (2006) 347–368. [Google Scholar]
  5. J.W. Barrett and L. Prigozhin, A mixed formulation of the Monge-Kantorovich equations. ESAIM: M2AN 41 (2007) 1041–1060. [CrossRef] [EDP Sciences] [Google Scholar]
  6. J.W. Barrett and L. Prigozhin, A quasi-variational inequality problem in superconductivity. M3AS 20 (2010) 679–706. [Google Scholar]
  7. S. Dumont and N. Igbida, On a dual formulation for the growing sandpile problem. Euro. J. Appl. Math. 20 (2008) 169–185. [Google Scholar]
  8. S. Dumont and N. Igbida, On the collapsing sandpile problem. Commun. Pure Appl. Anal. 10 (2011) 625–638. [CrossRef] [MathSciNet] [Google Scholar]
  9. I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976). [Google Scholar]
  10. L.C. Evans, M. Feldman and R.F. Gariepy, Fast/slow diffusion and collapsing sandpiles. J. Differ. Eqs. 137 (1997) 166–209. [Google Scholar]
  11. M. Farhloul, A mixed finite element method for a nonlinear Dirichlet problem. IMA J. Numer. Anal. 18 (1998) 121–132. [CrossRef] [MathSciNet] [Google Scholar]
  12. G.B. Folland, Real Analysis: Modern Techniques and their Applications, 2nd Edition. Wiley-Interscience, New York (1984). [Google Scholar]
  13. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd Edition. Springer, Berlin (1983). [Google Scholar]
  14. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York (1984). [Google Scholar]
  15. L. Prigozhin, A quasivariational inequality in the problem of filling a shape. U.S.S.R. Comput. Math. Phys. 26 (1986) 74–79. [CrossRef] [Google Scholar]
  16. L. Prigozhin, A variational model of bulk solids mechanics and free-surface segregation. Chem. Eng. Sci. 48 (1993) 3647–3656. [CrossRef] [Google Scholar]
  17. L. Prigozhin, Sandpiles and river networks: extended systems with nonlocal interactions. Phys. Rev. E 49 (1994) 1161–1167. [CrossRef] [MathSciNet] [Google Scholar]
  18. L. Prigozhin, Variational model for sandpile growth. Eur. J. Appl. Math. 7 (1996) 225–235. [Google Scholar]
  19. J.F. Rodrigues and L. Santos, Quasivariational solutions for first order quasilinear equations with gradient constraint. Arch. Ration. Mech. Anal. 205 (2012) 493–514. [CrossRef] [Google Scholar]
  20. J. Simon, Compact sets in the space Lp(0,T;B). Annal. Math. Pura. Appl. 146 (1987) 65–96. [Google Scholar]
  21. J. Simon, On the existence of the pressure for solutions of the variational Navier-Stokes equations. J. Math. Fluid Mech. 1 (1999) 225–234. [CrossRef] [MathSciNet] [Google Scholar]
  22. R. Temam, Mathematical Methods in Plasticity. Gauthier-Villars, Paris (1985). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you