Free Access
Issue
ESAIM: M2AN
Volume 47, Number 5, September-October 2013
Page(s) 1387 - 1412
DOI https://doi.org/10.1051/m2an/2013072
Published online 30 July 2013
  1. E Audusse, Modelisation hyperbolique et analyse numerique pour les ecoulements en eaux peu profondes. Ph.D. thesis. Université Pierre et Marie Curie - Paris VI (2004). [Google Scholar]
  2. E. Audusse and M.-O. Bristeau, Transport of pollutant in shallow water flows: A two time steps kinetic method. ESAIM: M2AN 37 (2003) 389–416. [CrossRef] [EDP Sciences] [Google Scholar]
  3. E. Audusse and M.-O. Bristeau, A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes. J. Comput. Phys. 206 (2005) 311–333. [CrossRef] [MathSciNet] [Google Scholar]
  4. E. Audusse, M.-O. Bristeau, M. Pelanti and J. Sainte-Marie, Approximation of the hydrostatic Navier-Stokes system for density stratified flows by a multilayer model. Kinetic interpretation and numerical validation. J. Comput. Phys. 230 (2011) 3453–3478. [CrossRef] [Google Scholar]
  5. E. Audusse, M.-O. Bristeau, B. Perthame and J. Sainte-Marie, A multilayer saint–venant system with mass exchanges for shallow water flows. Derivation and numerical validation. ESAIM: M2AN 45 (2011) 169–200. [CrossRef] [EDP Sciences] [Google Scholar]
  6. E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and Be. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. [CrossRef] [MathSciNet] [Google Scholar]
  7. S.-D. Ayata, M. Lévy, O. Aumont, A. Sciandra, J. Sainte-Marie, A. Tagliabue and O. Bernard, Phytoplankton growth formulation in marine ecosystem models: should we take into account photo-acclimation and variable stochiometry in oligotrophic areas? To appear in J. Marine Syst. [Google Scholar]
  8. M. Baklouti, F. Diaz, C. Pinazo, V. Faure and B. Queguiner, Investigation of mechanistic formulations depicting phytoplankton dynamics for models of marine pelagic ecosystems and description of a new model. Progr. Oceanogr. 71 (2006) 1–33. [CrossRef] [Google Scholar]
  9. A.-J.-C. Barré de Saint-Venant, Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et làintroduction des marées dans leur lit. Comptes Rendus des Séances de l’Académie des Sciences, Paris 73 (1871) 147–154. [Google Scholar]
  10. O. Bernard, Hurdles and challenges for modelling and control of microalgae for co2 mitigation and biofuel production. J. Process Control 21 (2011) 1378–1389. [CrossRef] [Google Scholar]
  11. O. Bernard and J.-L. Gouzé, Transient behavior of biological loop models, with application to the Droop model. Math. Biosci. 127 (1995) 19–43. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  12. O. Bernard and J.-L. Gouzé, Global qualitative behavior of a class of nonlinear biological systems: application to the qualitative validation of phytoplankton growth models. Artif. Intel. 136 (2002) 29–59. [CrossRef] [Google Scholar]
  13. A.-C. Boulanger and J. Sainte-Marie, Analytical solutions for the free surface hydrostatic euler equations. Submitted to Nonlinearity (2011). [Google Scholar]
  14. J.-F. Bourgat, P. Le Tallec, F. Mallinger, B. Perthame, Y. Qiu, C. boltzmann and navier-stokes, Research Report RR-2281, Projet MENUSIN. INRIA (1994). [Google Scholar]
  15. M.-O. Bristeau and J. Sainte-Marie, Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. DCDS(B) 10 (2008) 733–759. [Google Scholar]
  16. M.-O. Bristeau, N. Goutal and J. Sainte-Marie, Numerical simulations of a non-hydrostatic shallow water model. Comput. Fluids 47 (2011) 51–64. [CrossRef] [Google Scholar]
  17. V. Casulli, A semi–implicit finite difference method for non-hydrostatic, free–surface flows. Int. J. Numer. Methods Fluids 30 (1999) 425–440. [CrossRef] [Google Scholar]
  18. Y. Chisti, Biodiesel from microalgae. Biotech. Adv. 25 (2007) 294–306. [Google Scholar]
  19. M.R. Droop, Vitamin B12 and marine ecology. IV. the kinetics of uptake growth and inhibition in Monochrysis lutheri. J. Mar. Biol. Assoc. 48 (1968) 689–733. [CrossRef] [Google Scholar]
  20. M.R. Droop, 25 years of algal growth kinetics, a personal view. Botanica Marina 16 (1983) 99–112. [Google Scholar]
  21. R.C. Dugdale, Nutrient limitation in the sea: dynamics, identification and significance. Limnol. Oceanogr. 12 (1967) 685–695. [CrossRef] [Google Scholar]
  22. S. Esposito, V. Botte, D. Iudicone and M. Ribera d’Alcala, Numerical analysis of cumulative impact of phytoplankton photoresponses to light variation on carbon assimilation. J. Theor. Biol 261 (2009) 361–371. [CrossRef] [PubMed] [Google Scholar]
  23. R.J. Geider, H.L. MacIntyre and T.M. Kana, A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol Oceanogr 43 (1998) 679–694. [Google Scholar]
  24. J.-F. Gerbeau, and B. Perthame, Derivation of viscous saint–venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89–102. [CrossRef] [MathSciNet] [Google Scholar]
  25. J.U. Grobbelaar, C.J. Soeder and E. Stengel, Modeling algal productivity in large outdoor cultures and waste treatment systems. Biomass 21 (1990) 297–314. [CrossRef] [Google Scholar]
  26. H. Guterman, A. Vonshak and S. Ben-Yaakov, A macromodel for outdoor algal mass production. Biotechnol. Bioengineer. 35 (1990) 809–819. [CrossRef] [Google Scholar]
  27. B.P. Han, Photosynthesis-irradiance response at physiological level: a mechanistic model. J. Theoret. Biol. 213 (2001) 121–127. [CrossRef] [Google Scholar]
  28. B.P. Han, A mechanistic model of algal photoinhibition induced by photodamage to photosystem-ii. J. Theoret. Biology 214 (2002) 519–527. [CrossRef] [Google Scholar]
  29. J.-M. Hervouet, Hydrodynamics of Free Surface Flows: Modelling With the Finite Element Method. John Wiley and Sons (2007). [Google Scholar]
  30. D.L. Huggins, R.H. Piedrahita and T. Rumsey, Analysis of sediment transport modeling using computational fluid dynamics (cfd) for aquaculture raceways. Aquacult. Engrg. 31 (2004) 277–293. [CrossRef] [Google Scholar]
  31. D.L. Huggins, R.H. Piedrahita and T. Rumsey, Use of computational fluid dynamics (cfd) for aquaculture raceway design to increase settling effectiveness. Aquacult. Engrg. 33 (2005) 167–180. [CrossRef] [Google Scholar]
  32. S.C. James and V. Boriah, Modeling algae growth in an open–channel raceway. J Comput. Biol. 17 (2010) 895–906. [CrossRef] [PubMed] [Google Scholar]
  33. B. Khobalatte and B. Perthame, Maximum principle on the entropy and minimal limitations for kinetic schemes. Research Report RR-1628, Projet MENUSIN. INRIA (1992). [Google Scholar]
  34. K. Lange and F.J. Oyarzun, The attractiveness of the Droop equations. Math. Biosci. 111 (1992) 261–278. [CrossRef] [PubMed] [Google Scholar]
  35. H.-P. Luo and M.H. Al-Dahhan, Analyzing and modeling of photobioreactors by combining first principles of physiology and hydrodynamics. Biotechnol. Bioengineer. 85 (2004) 382–393. [CrossRef] [Google Scholar]
  36. F.B. Metting, Biodiversity and application of microalgae. J. Indust. Microbiol. Biotechnol. 17 (1996) 477–489. [Google Scholar]
  37. J. C. H. Peeters and P. Eilers, The relationship between light intensity and photosynthesis: a simple mathematical model. Hydrobiol. Bull. 12 (1978) 134–136. [CrossRef] [Google Scholar]
  38. I. Perner, C. Posten and J. Broneske, Cfd-aided optimization of a plate photobioreactor for cultivation of microalgae. Chemie Ingenieur Technik 74 (2002) 865–869. [CrossRef] [Google Scholar]
  39. I. Perner-Nochta and C. Posten, Simulations of light intensity variation in photobioreactors. J. Biotechnol. 131 (2007) 276–285. [CrossRef] [PubMed] [Google Scholar]
  40. B. Perthame, Kinetic formulation of conservation laws. Oxford lecture series in mathematics and its applications. Oxford University Press (2002). [Google Scholar]
  41. J. Pruvost, L. Pottier and J. Legrand, Numerical investigation of hydrodynamic and mixing conditions in a torus photobioreactor. Chemical Engineer. Sci. 61 (2006) 4476–4489. [CrossRef] [Google Scholar]
  42. L. Rodolfi, G.C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini and M.R. Tredici, Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor. Biotechnol. Bioeng. 102 (2009) 100–112. [Google Scholar]
  43. R. Rosello Sastre, Z. Coesgoer, I. Perner-Nochta, P. Fleck-Schneider and C. Posten, Scale–down of microalgae cultivations in tubular photo-bioreactors – a conceptual approach. J. Biotechnol. 132 (2007) 127–133. [CrossRef] [PubMed] [Google Scholar]
  44. J. Sainte-Marie, Vertically averaged models for the free surface euler system. derivation and kinetic interpretation. Math. Models Methods Appl. Sci. 21 (2011) 459–490. [Google Scholar]
  45. A. Sciandra and P. Ramani, The limitations of continuous cultures with low rates of medium renewal per cell. J. Exp. Mar. Biol. Ecol. 178 (1994) 1–15. [CrossRef] [Google Scholar]
  46. A. Sukenik, P.G. Falkowski and J. Bennett. Potential enhancement of photosynthetic energy conversion in algal mass culture. Biotechnol. Bioengineer. 30 (1987) 970–977. [CrossRef] [Google Scholar]
  47. A. Sukenik, R.S. Levy, Y. Levy, P.G. Falkowski and Z. Dubinsky, Optimizing algal biomass production in an outdoor pond: a simulation model. J. Appl. Phycol. 3 (1991) 191–201. [CrossRef] [Google Scholar]
  48. C. Vejrazka, M. Janssen, M. Streefland and R.H. Wijffels, Photosynthetic efficiency of chlamydomonas reinhardtii in flashing light. Biotechnol. Bioengineer. 108 (2011) 2905–2913. [CrossRef] [Google Scholar]
  49. R.H. Wijffels and M.J. Barbosa, An outlook on microalgal biofuels. Science 329 (2010) 796–799. [CrossRef] [PubMed] [Google Scholar]
  50. P.J.B. Williams and L.M.L. Laurens, Microalgae as biodiesel and biomass feedstocks: Review and analysis of the biochemistry, energetics and economics. Energy Environ. Sci. 3 (2010) 554–590. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you