Free Access
Issue
ESAIM: M2AN
Volume 47, Number 5, September-October 2013
Page(s) 1413 - 1432
DOI https://doi.org/10.1051/m2an/2013074
Published online 30 July 2013
  1. B.P. Athreya, N. Goldenfeld, J.A. Dantzig, M. Greenwood and N. Provatas, Adaptive mesh computation of polycrystalline pattern formation using a renormalization-group reduction of the phase-field crystal model. Phys. Rev. E 76 (2007) 056706. [CrossRef] [Google Scholar]
  2. A.L. Bertozzi, S. Esedoglu and A. Gillette, Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans. Image Process. 16 (2007) 285–291. [CrossRef] [PubMed] [Google Scholar]
  3. M. Cheng and J.A. Warren, An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 227 (2008) 6241–6248. [CrossRef] [Google Scholar]
  4. K.R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70 (2004) 051605. [CrossRef] [Google Scholar]
  5. K.R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth. Phys. Rev. Lett. 88 (2002) 245701. [CrossRef] [PubMed] [Google Scholar]
  6. K.R. Elder, N. Provatas, J. Berry, P. Stefanovic and M. Grant, Phase-field crystal modeling and classical density functional theory of freezing. Phys. Rev. B 75 (2007) 064107. [CrossRef] [Google Scholar]
  7. D. Eyre, Unconditionally gradient stable time marching the Cahn–Hilliard equation, in Computational and mathematical models of microstructural evolution, edited by J.W. Bullard, R. Kalia, M. Stoneham and L.Q. Chen. Warrendale, PA, Materials Research Society 53 (1998) 1686–1712. [Google Scholar]
  8. K. Glasner, A diffuse interface approach to Hele–Shaw flow. Nonlinearity 16 (2003) 49–66. [CrossRef] [Google Scholar]
  9. M. Khenner, A. Averbuch, M. Israeli and M. Nathan, Numerical simulation of grain-boundary grooving by level set method. J. Comput. Phys. 170 (2001) 764–784. [CrossRef] [Google Scholar]
  10. J.N. Lyness and B.J.J. McHugh, On the remainder term in the N-dimensional Euler Maclaurin expansion. Numer. Math. 15 (1970) 333–344. [CrossRef] [Google Scholar]
  11. P. Smereka, Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19 (2003) 439–456. Special issue in honor of the sixtieth birthday of Stanley Osher. [Google Scholar]
  12. S.M. Wise, C. Wang and J.S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47 (2009) 2269–2288. [CrossRef] [MathSciNet] [Google Scholar]
  13. K.-A. Wu and A. Karma, Phase-field crystal modeling of equilibrium bcc-liquid interfaces. Phys. Rev. B 76 (2007) 184107. [CrossRef] [Google Scholar]
  14. K.-A. Wu, M. Plapp and P.W. Voorhees, Controlling crystal symmetries in phase-field crystal models. J. Phys. Condensed Matter 22 (2010) 364102. [CrossRef] [Google Scholar]
  15. K.-A. Wu and P.W. Voorhees, Stress-induced morphological instabilities at the nanoscale examined using the phase field crystal approach. Phys. Rev. B 80 (2009) 125408. [CrossRef] [Google Scholar]
  16. D.-H. Yeon, Z.-F. Huang, K. Elder and K. Thornton, Density-amplitude formulation of the phase-field crystal model for two–phase coexistence in two and three dimensions. Philosophical Magazine 90 (2010) 237–263. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you