Free Access
Issue
ESAIM: M2AN
Volume 47, Number 5, September-October 2013
Page(s) 1367 - 1386
DOI https://doi.org/10.1051/m2an/2013073
Published online 30 July 2013
  1. T. Abboud and H. Ammari, Diffraction at a curved grating: Tm and te cases, homogenization. J. Math. Anal. Appl. 202 (1996) 995–1026. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions. Dover Publications (1965). [Google Scholar]
  3. H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging. Springer (2008). [Google Scholar]
  4. H. Ammari, E. Iakovleva and D. Lesselier, A music algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency. Multiscale Model. Simul. 3 (2005) 597–628. [CrossRef] [Google Scholar]
  5. H. Ammari and H. Kang. Reconstruction of small inhomogeneities from boundary measurements. Springer Verlag (2004). [Google Scholar]
  6. T. Arens and T. Hohage, On radiation conditions for rough surface scattering problems. IMA J. Appl. Math. 70 (2005) 839–847. [CrossRef] [Google Scholar]
  7. G. Bao, Z. Chen and H. Wu, Adaptive finite-element method for diffraction gratings. JOSA A 22 (2005) 1106–1114. [Google Scholar]
  8. G. Bao, D. Dobson and J. Cox, Mathematical studies in rigorous grating theory. JOSA A 12 (1995) 1029–1042. [Google Scholar]
  9. J.-B. Bellet, Identification par imagerie laser d’un objet dissimulé - Aspects mathématiques et numériques. Ph.D. thesis, École Polytechnique, Palaiseau (2011). [Google Scholar]
  10. S. Chandler-Wilde, C. Ross and B. Zhang, Scattering by infinite one-dimensional rough surfaces. Proc. Royal Soc. London. Ser. A : Math. Phys. Engrg. Sci. 455 (1999) 3767–3787. [CrossRef] [Google Scholar]
  11. W. Chew, Waves and fields in inhomogenous media. IEEE Press (1999). [Google Scholar]
  12. I. Ciuperca, M. Jai and C. Poignard, Approximate transmission conditions through a rough thin layer. The case of the periodic roughness. Eur. J. Appl. Math. (2009). [Google Scholar]
  13. J. DeSanto, G. Erdmann, W. Hereman and M. Misra, Theoretical and computational aspects of scattering from periodic surfaces : one-dimensional transmission interface. Waves Random Media 11 (2001) 425–453. [CrossRef] [Google Scholar]
  14. M. Durán, R. Hein and J.-C. Nédélec, Computing numerically the greens function of the half-plane helmholtz operator with impedance boundary conditions. Numer. Math. 107 (2007) 295–314. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Durán, I. Muga and J. Nédélec, The helmholtz equation in a locally perturbed half-space with non-absorbing boundary. Arch. Ration. Mech. Anal. 191 (2009) 143–172. [CrossRef] [Google Scholar]
  16. T. Gaylord and M. Moharam, Analysis and applications of optical diffraction by gratings. IEEE 73 (1985) 894–937. [CrossRef] [Google Scholar]
  17. W. C. Gibson, The Method of Moments in Electromagnetics. Chapman and Hall/CRC (2008). [Google Scholar]
  18. R. Hein, Green’s functions and integral equations for the Laplace and Helmholtz operators in impedance half-spaces. Ph.D. thesis, École Polytechnique, Palaiseau (2010). [Google Scholar]
  19. C. Jerez-Hanckes and J.-C. Nédélec, Asymptotics for Helmholtz and Maxwell solutions in 3-D open waveguides. Technical report, ETH, Zürich (2010). [Google Scholar]
  20. L. Li, J. Chandezon, G. Granet and J. Plumey, Rigorous and efficient grating-analysis method made easy for optical engineers. Appl. Optics 38 (1999) 304–313. [Google Scholar]
  21. J.-C. Nédélec, Acoustic and Electromagnetic Equations. Springer (2001). [Google Scholar]
  22. E. Popov and M. Nevière, Grating theory: new equations in fourier space leading to fast converging results for tm polarization. JOSA A 17 (2000) 1773–1784. [Google Scholar]
  23. A. Soubret, Diffusion des ondes électromagnétiques par des milieux et des surfaces aléatoires : étude des effets cohérents dans le champ diffusé. Ph.D. thesis, Université de la Méditerranée – Aix-Marseille II (2001). [Google Scholar]
  24. Y. Wu and Y. Lu, Analyzing diffraction gratings by a boundary integral equation neumann-to-dirichlet map method. JOSA A 26 (2009) 2444–2451. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you