Free Access
Issue |
ESAIM: M2AN
Volume 47, Number 5, September-October 2013
|
|
---|---|---|
Page(s) | 1335 - 1366 | |
DOI | https://doi.org/10.1051/m2an/2013071 | |
Published online | 30 July 2013 |
- M. Augustin, A. Caiazzo, A. Fiebach, J. Fuhrmann, V. John, A. Linke and R. Umla, An assessment of discretizations for convection-dominated convection-diffusion equations. Comput. Methods Appl. Mech. Engrg. 200 (2011) 3395–3409. [CrossRef] [MathSciNet] [Google Scholar]
- R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001) 173–199. [CrossRef] [MathSciNet] [Google Scholar]
- R. Becker and M. Braack, A two-level stabilization scheme for the Navier-Stokes equations, Proc. of ENUMATH 2003, Numerical Mathematics and Advanced Applications, edited by M. Feistauer, V. Dolejıš´, P. Knobloch and K. Najzar. Springer-Verlag, Berlin (2004) 123–130. [Google Scholar]
- M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43 (2006) 2544–2566. [CrossRef] [MathSciNet] [Google Scholar]
- M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg. 196 (2007) 853–866. [CrossRef] [MathSciNet] [Google Scholar]
- A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32 (1982) 199–259. [CrossRef] [MathSciNet] [Google Scholar]
- E. Burman and A. Ern, Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence. Math. Comput. 74 (2005) 1637–1652. [CrossRef] [Google Scholar]
- E. Burman and M.A. Fernández, Finite element methods with symmetric stabilization for the transient convection-diffusion-reaction equation. Comput. Methods Appl. Mech. Engrg. 198 (2009) 2508–2519. [CrossRef] [MathSciNet] [Google Scholar]
- E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Engrg. 193 (2004) 1437–1453. [CrossRef] [MathSciNet] [Google Scholar]
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
- R. Codina, A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation. Comput. Methods Appl. Mech. Engrg. 110 (1993) 325–342. [Google Scholar]
- A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag, New York (2004). [Google Scholar]
- L.P. Franca, S.L. Frey and T.J.R. Hughes, Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Engrg. 95 (1992) 253–276. [CrossRef] [MathSciNet] [Google Scholar]
- L.P. Franca and F. Valentin, On an improved unusual stabilized finite element method for the advective-reactive-diffusive equation. Comput. Methods Appl. Mech. Engrg. 190 (2000) 1785–1800. [CrossRef] [MathSciNet] [Google Scholar]
- S. Ganesan and L. Tobiska, Stabilization by local projection for convection-diffusion and incompressible flow problems. J. Sci. Comput. 43 (2010) 326–342. [CrossRef] [Google Scholar]
- T.J.R. Hughes, L.P. Franca and G.M. Hulbert, A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg. 73 (1989) 173–189. [CrossRef] [MathSciNet] [Google Scholar]
- V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part I – A review. Comput. Methods Appl. Mech. Engrg. 196 (2007) 2197–2215. [CrossRef] [MathSciNet] [Google Scholar]
- V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part II – Analysis for P1 and Q1 finite elements. Comput. Methods Appl. Mech. Engrg. 197 (2008) 1997–2014. [CrossRef] [MathSciNet] [Google Scholar]
- V. John, P. Knobloch and S.B. Savescu, A posteriori optimization of parameters in stabilized methods for convection-diffusion problems – Part I. Comput. Methods Appl. Mech. Engrg. 200 (2011) 2916–2929. [CrossRef] [MathSciNet] [Google Scholar]
- V. John, J.M. Maubach and L. Tobiska, Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems. Numer. Math. 78 (1997) 165–188. [CrossRef] [MathSciNet] [Google Scholar]
- V. John, T. Mitkova, M. Roland, K. Sundmacher, L. Tobiska and A. Voigt, Simulations of population balance systems with one internal coordinate using finite element methods. Chem. Engrg. Sci. 64 (2009) 733–741. [CrossRef] [Google Scholar]
- V. John and J. Novo, Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations. SIAM J. Numer. Anal. 49 (2011) 1149–1176. [CrossRef] [Google Scholar]
- V. John and E. Schmeyer, Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Engrg. 198 (2008) 475–494. [CrossRef] [MathSciNet] [Google Scholar]
- P. Knobloch, A generalization of the local projection stabilization for convection-diffusion-reaction equations. SIAM J. Numer. Anal. 48 (2010) 659–680. [CrossRef] [Google Scholar]
- P. Knobloch, Local projection method for convection-diffusion-reaction problems with projection spaces defined on overlapping sets. Proc. of ENUMATH 2009, Numerical Mathematics and Advanced Applications, edited by G. Kreiss, P. Lötstedt, A. M?lqvist and M. Neytcheva. Springer-Verlag, Berlin (2010) 497–505. [Google Scholar]
- P. Knobloch and G. Lube, Local projection stabilization for advection-diffusion-reaction problems: One-level vs. two-level approach. Appl. Numer. Math. 59 (2009) 2891–2907. [CrossRef] [Google Scholar]
- T. Knopp, G. Lube and G. Rapin, Stabilized finite element methods with shock capturing for advection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 191 (2002) 2997–3013. [CrossRef] [Google Scholar]
- O.A. Ladyzhenskaya, New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them. Tr. Mat. Inst. Steklova 102 (1967) 85–104. [Google Scholar]
- G. Lube and G. Rapin, residual-based stabilized higher-order FEM for advection-dominated problems. Comput. Methods Appl. Mech. Engrg. 195 (2006) 4124–4138. [Google Scholar]
- G. Matthies, P. Skrzypacz and L. Tobiska, A unified convergence analysis for local projection stabilizations applied to the Oseen problem. Math. Model. Numer. Anal. 41 (2007) 713–742. [Google Scholar]
- H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems, 2nd ed. Springer-Verlag, Berlin (2008). [Google Scholar]
- R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis North-Holland, Amsterdam (1977). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.