Volume 48, Number 2, March-April 2014
Multiscale problems and techniques
Page(s) 433 - 447
Published online 20 February 2014
  1. F. Aminzadeh, J. Brac and T. Kunz, 3-D Salt and Overthrust models. In SEG/EAGE 3-D Modeling Series 1. Tulsa, OK (1997). [Google Scholar]
  2. J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200. [Google Scholar]
  3. J. Bramble and J. Pasciak, A note on the existence and uniqueness of solutions of frequency domain elastic wave problems: a priori estimates in H1. J. Math Anal. Appl. 345 (2008) 396–404. [CrossRef] [Google Scholar]
  4. W.C. Chew and W.H. Weedon, A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microwave Optical Tech. Lett. 7 (1994) 599–604. [Google Scholar]
  5. J. Choi, J.J. Dongarra, R. Pozo and D.W. Walker, ScaLAPACK: A scalable linear algebra library for distributed memory concurrent computers, in Proc. of the Fourth Symposium on the Frontiers of Massively Parallel Computation, IEEE Comput. Soc. Press(1992) 120–127. [Google Scholar]
  6. B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Commun. Pure Appl. Math. 64 (2011) 697–735. [CrossRef] [Google Scholar]
  7. B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model. Simul. 9 (2011) 686–710. [CrossRef] [Google Scholar]
  8. Y.A. Erlangga, C. Vuik and C.W. Oosterlee, On a class of preconditioners for solving the Helmholtz equation. Appl. Numer. Math. 50 (2004) 409–425. [CrossRef] [Google Scholar]
  9. O.G. Ernst and M.J. Gander, Why it is difficult to solve Helmholtz problems with classical iterative methods, in vol. 83 of Numerical Analysis of Multiscale Problems. Edited by I. Graham, T. Hou, O. Lakkis and R. Scheichl. Springer-Verlag (2011) 325–361. [Google Scholar]
  10. L. Grasedyck and W. Hackbusch, Construction and arithmetics of ℋ-matrices. Computing 70 (2003) 295–334. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Gupta, G. Karypis and V. Kumar, A highly scalable parallel algorithm for sparse matrix factorization. IEEE Transactions on Parallel and Distributed Systems 8 (1997) 502–520. [CrossRef] [Google Scholar]
  12. A. Gupta, S. Koric and T. George, Sparse matrix factorization on massively parallel computers, in Proc. of the Conference on High Performance Computing, Networking, Storage and Analysis. Portland, OR (2009). [Google Scholar]
  13. I. Harari and U. Albocher, Studies of FE/PML for exterior problems of time-harmonic elastic waves. Comput. Methods Appl. Mech. Eng. 195 (2006) 3854–3879. [CrossRef] [Google Scholar]
  14. T. Hughes, The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Inc. (1987). [Google Scholar]
  15. G. Karniadakis, Spectral/hp element methods for CFD. Oxford University Press (1999). [Google Scholar]
  16. D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139 (1999) 806–822. [CrossRef] [Google Scholar]
  17. J. Liu. The multifrontal method for sparse matrix solution: theory and practice. SIAM Review 34 (1992) 82–109. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Patera, A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54 (1984) 468–488. [CrossRef] [Google Scholar]
  19. J. Poulson, B. Engquist, S. Li and L. Ying, A parallel sweeping preconditioner for heterogeneous 3D Helmholtz equations e-prints ArXiv (2012). [Google Scholar]
  20. J. Poulson, B. Marker, R.A. van de Geijn, J.R. Hammond and N.A. Romero, Elemental: A new framework for distributed memory dense matrix computations. ACM Trans. Math. Software 39. [Google Scholar]
  21. P. Raghavan, Efficient parallel sparse triangular solution with selective inversion. Parallel Proc. Lett. 8 (1998) 29–40. [CrossRef] [Google Scholar]
  22. Y. Saad and M.H. Schultz, A generalized minimum residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986) 856–869. [Google Scholar]
  23. R. Schreiber, A new implementation of sparse Gaussian elimination. ACM Trans. Math. Software 8 (1982) 256–276. [CrossRef] [MathSciNet] [Google Scholar]
  24. P. Tsuji, B. Engquist and L. Ying, A sweeping preconditioner for time-harmonic Maxwell’s equations with finite elements. J. Comput. Phys. 231 (2012) 3770–3783. [CrossRef] [Google Scholar]
  25. P. Tsuji and L. Ying, A sweeping preconditioner for Yee’s finite difference approximation of time-harmonic Maxwell’s equations. Frontiers of Mathematics in China 7 (2012) 347–363. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you