Volume 48, Number 2, March-April 2014
Multiscale problems and techniques
Page(s) 449 - 474
Published online 20 February 2014
  1. G. Alessandrini and V. Nesi, Univalent σ-harmonic mappings. Arch. Rational Mech. Anal. 158 (2001) 155–171. [Google Scholar]
  2. G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization. SIAM MMS 4 (2005) 790–812. [Google Scholar]
  3. A. Ancona, Some results and examples about the behavior of harmonic functions and Green’s funtions with respect to second order elliptic operators. Nagoya Math. J. 165 (2002) 123–158. [MathSciNet] [Google Scholar]
  4. T. Arbogast, G. Pencheva, M.F. Wheeler and I. Yotov, A multiscale mortar mixed finite element method. SIAM MMS 6 (2007) 319–346. [Google Scholar]
  5. I. Babuška and E. Osborn, Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods. SIAM J. Numer. Anal. 20 (1983) 510–536. [CrossRef] [MathSciNet] [Google Scholar]
  6. I. Babuška, G. Caloz and E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31 (1994) 945–981. [Google Scholar]
  7. M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An Empirical Interpolation Method: Application to Efficient Reduced-Basis Discretization of Partial Differential Equations. C.R. Acad. Sci. Paris Series I 339 (2004) 667–672. [Google Scholar]
  8. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structure. North-Holland, Amsterdam (1978). [Google Scholar]
  9. S. Boyaval, C. LeBris, T. Lelièvre, Y. Maday, N. Nguyen and A. Patera, Reduced Basis Techniques for Stochastic Problems. Arch. Comput. Meth. Eng. 17 (2012) 435–454. [Google Scholar]
  10. Y. Chen, L.J. Durlofsky, M. Gerritsen and X.H. Wen, A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Advances in Water Resources 26 (2003) 1041–1060. [CrossRef] [Google Scholar]
  11. Z. Chen and T.Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72 (2002) 541–576. [Google Scholar]
  12. C.C. Chu, I. Graham and T.Y. Hou, A New multiscale finite element method for high-contrast elliptic interface problems. Math. Comput. 79 (2010) 1915–1955. [CrossRef] [Google Scholar]
  13. Weinan E and B. Engquist, The heterogeneous multi-scale methods. Commun. Math. Sci. 1 (2003) 87–133. [CrossRef] [MathSciNet] [Google Scholar]
  14. Y. Efendiev, J. Galvis and X.H. Wu, Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys. 230 (2011) 937–955. [Google Scholar]
  15. Y. Efendiev, V. Ginting, T. Hou and R. Ewing, Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys. 220 (2006) 155–174. [CrossRef] [Google Scholar]
  16. Y. Efendiev and T. Hou, Multiscale finite element methods. Theory and applications. Springer (2009). [Google Scholar]
  17. Y. Efendiev, T.Y. Hou and X.H. Wu, Convergence of a nonconforming multiscale finite element method. SIAM J. Num. Anal. 37 (2000) 888–910. [Google Scholar]
  18. Y. Efendiev, J. Galvis and T.Y. Hou, Generalized multiscale finite element methods (GMsFEM). Accepted by JCP (2013). [Google Scholar]
  19. J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high-contrast media: Reduced dimension coarse spaces. SIAM MMS 8 (2009) 1621–1644. [Google Scholar]
  20. I.G. Graham, P.O. Lechner and R. Scheichl, Domain decomposition for multiscale PDEs. Numer. Math. 106 (2007) 589–626. [CrossRef] [MathSciNet] [Google Scholar]
  21. T.Y. Hou and X.H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [CrossRef] [MathSciNet] [Google Scholar]
  22. T.Y. Hou, X.H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68 (1999) 913–943. [CrossRef] [MathSciNet] [Google Scholar]
  23. T. Hughes, G. Feijoo, L. Mazzei and J. Quincy, The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg. 166 (1998) 3–24. [Google Scholar]
  24. P. Jenny, S.H. Lee and H. Tchelepi, Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187 (2003) 47–67. [CrossRef] [Google Scholar]
  25. Y. Maday, Proceedings of the International Conference Math., Madrid. European Mathematical Society, Zurich (2006). [Google Scholar]
  26. A. Maugeri, D.K. Palagachev and L.G. Softova. Elliptic and parabolic equations with discontinuous coefficients. Math. Research 109, Wiley-VCH (2000). [Google Scholar]
  27. D.W. Mclaughlin, G.C. Papanicolaou and O.R. Pironneau, Convetion of mircrostructure and related problems. SIAM J. Appl. Math. 45 (1985) 780–797. [CrossRef] [Google Scholar]
  28. S. Moskow and M. Vogelius, First-oder corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof. Proc. Roy. Soc. Edinburgh. 127A (1997) 1263–1299. [CrossRef] [Google Scholar]
  29. H. Owhadi and L. Zhang, Metric based up-scaling. Commun. Pure Appl. Math. LX (2007) 675–723. [Google Scholar]
  30. H. Owhadi and L. Zhang, Homogenization of parabolic equations with a continuum of space and time scales. SIAM J. Numer. Anal. 46 (2007) 1–36. [CrossRef] [Google Scholar]
  31. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15 (2008) 229–275. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you