Issue
ESAIM: M2AN
Volume 48, Number 2, March-April 2014
Multiscale problems and techniques
Page(s) 475 - 491
DOI https://doi.org/10.1051/m2an/2013116
Published online 11 March 2014
  1. J. Aarnes, S. Krogstad and K. Lie, A hierarchical multiscale method for two-phase flow based on upon mixed finite elements and nonuniform coarse grids. SIAM Multiscale Model. Simul. 5 (2006) 337–363. [CrossRef] [Google Scholar]
  2. T. Arbogast, G. Pencheva, M. Wheeler and I. Yotov, A multiscale mortar mixed finite element method. SIAM Multiscale Model. Simul. 6 (2007) 319–346. [CrossRef] [Google Scholar]
  3. X. Cai and D. Keyes, Nonlinearly preconditioned inexact Newton algorithms. SIAM J. Sci. Comput. 24 (2002) 183–200. [CrossRef] [MathSciNet] [Google Scholar]
  4. X. Chen and Y. Lou, Principal eigenvalue and eigenfunction of elliptic operator with large convection and its application to a competition model. Indiana Univ. Math. J. 57 (2008) 627–658. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Dryja and W. Hackbusch, On the nonlinear domain decomposition method. BIT 37 (1997) 296–311. [CrossRef] [MathSciNet] [Google Scholar]
  6. Y. Efendiev, J. Galvis, R. Lazarov, S. Margenov and J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Comput. Method Appl. Math. 12 (2012) 1–22. [CrossRef] [Google Scholar]
  7. Y. Efendiev, J. Galvis and T. Hou, Generalized Multiscale Finite Element Method. J. Comput. Phys. (2013) 116–135. [CrossRef] [Google Scholar]
  8. Y. Efendiev, J. Galvis, G. Li and M. Presho, Generalized Multiscale Finite Element Methods. Oversampling strategies. To appear in Int. J. Multiscale Comput. Engrg. [Google Scholar]
  9. Y. Efendiev, J. Galvis and X. Wu, Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys. 230 (2011) 937–955. [Google Scholar]
  10. J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high contrast media. SIAM Multiscale Model. Simul. 8 (2010) 1461–1483. [CrossRef] [Google Scholar]
  11. Y. Efendiev and T. Hou, Multiscale Finite Element Methods: Theory and Applications. Springer, New York (2009). [Google Scholar]
  12. T. Hou and X. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [CrossRef] [MathSciNet] [Google Scholar]
  13. T. Hughes, G. Feijóo, L. Mazzei and J. Quincy, The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg. 166 (1998) 3–24. [Google Scholar]
  14. P. Jenny, S. Lee and H. Tchelepi, Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187 (2003) 47–67. [CrossRef] [Google Scholar]
  15. T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. BIT 37 (1997) 296–311. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Solin and S. Giani, An iterative adaptive finite element method for elliptic eigenvalue problems. J. Comput. Appl. Math. 236 (2012) 4582–4599 [CrossRef] [Google Scholar]
  17. X. Tai and M. Espedal, Rate of convergence of some space decomposition methods for linear and nonlinear problems. Springer-Verlag, Berlin-Heidelburg (2008). [Google Scholar]
  18. J. Xu and L. Zikatanov, On an energy minimizing basis for algebraic multigrid methods. Comput. Visual Sci. 7 (2004) 121–127. [Google Scholar]
  19. X. Yao and J. Zhou, Numerical methods for computing nonlinear eigenpairs. Part I. Iso-homogeneous cases. SIAM J. Sci. Comput. 29 (2007) 1355–1374. [CrossRef] [Google Scholar]
  20. X. Yao and J. Zhou, Numerical methods for computing nonlinear eigenpairs. Part II. Non iso-homogenous cases. SIAM J. Sci. Comp. 30 (2008) 937–956. [CrossRef] [Google Scholar]
  21. E. Zeidler, Nonlinear Functional Analysis and Its Applications III. Springer-Verlag, New York (1985). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you