Free Access
Issue |
ESAIM: M2AN
Volume 49, Number 1, January-February 2015
|
|
---|---|---|
Page(s) | 1 - 17 | |
DOI | https://doi.org/10.1051/m2an/2014020 | |
Published online | 12 January 2015 |
- C. Bardos, R. Santos and R. Sentis, Diffusion approximation and computation of the critical size. Numerical Solutions of Nonlinear Problems. INRIA, Rocquencourt (1984). [Google Scholar]
- N. Ben Abdallah, A. Mellet and M. Puel, Anomalous diffusion limit for kinetic equations with degenerate collision frequency. M3AS 21 (2011) 2249–2262. [Google Scholar]
- N. Ben Abdallah, A. Mellet and M. Puel, Fractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach. KRM 4 (2011) 873–900. [CrossRef] [Google Scholar]
- A. Bensoussan, J.-L. Lions and G. Papanicolaou, Boundary layers and homogenization of transport processes. Publ. Res. Inst. Math. Sci. 15 (1979) 53–157. [CrossRef] [MathSciNet] [Google Scholar]
- P. Cattiaux, E. Nasreddine and M. Puel, Diffusion limit of Fokker−Planck equation with heavy tails equilibria: a probabilistic approach including anomalous rate (preprint). [Google Scholar]
- L. Cesbron, A. Mellet and K. trivisa, Anomalous transport of particles in plasma physics. Appl. Math. Lett. 25 (2012) 2344–2348. [CrossRef] [Google Scholar]
- P. Degond, Global existence of smooth solutions for the Vlasov−Fokker−Planck equation in one and two spaces dimensions, vol. 19 of Ann. Sci. E.N.S 4e Ser. (1986) 519–542. [Google Scholar]
- P. Degond. Macroscopic limits of the Boltzmann equation: a review. Modeling and computational methods for kinetic equations, vol. 357 of Model. Simul. Sci. Eng. Technol. Birkhauser Boston, Boston, MA (2004). [Google Scholar]
- P. Degond and P. Mas-Gallic, Existence of solutions and diffusion approximation for a model Fokker−Planck equation. Proc. of the conference on mathematical methods applied to kinetic equations, Paris, 1985. Transp. Theory Stat. Phys. 16 (1987) 589–636. [Google Scholar]
- P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes. Indiana Univ. Math. J. 49 (2000) 1175–1198. [MathSciNet] [Google Scholar]
- P. garbaczewski, V. Stephanovich and D. Kedzierski, Heavy-tailed targets and (ab)normal asymptotics in diffusive motion. Physica A 390 (2011) 990–1008. [CrossRef] [Google Scholar]
- E. Larsen and J. Keller. Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys. 15 (1974) 75–81. [CrossRef] [Google Scholar]
- J.L. Lions, Equations différentielles opérationnelles et problèmes aux limites. Vol. 9. Springer, Berlin 1961 (2003) 371–398. [Google Scholar]
- E. Lutz, Anomalous diffusion and Tsallis statistics in an optical lattice. Phys. Rev. A 67 (2003) 051402. [CrossRef] [Google Scholar]
- E. Lutz, Power-law tail distributions and nonergodicity. Phys. Rev. Lett. 93 (2004) 190602. [CrossRef] [PubMed] [Google Scholar]
- A. Mellet, Fractional diffusion limit for collisional kinetic equations: a moments method. Indiana Univ. Math. J. 59 (2010) 1333–1360. [CrossRef] [MathSciNet] [Google Scholar]
- A. Mellet, S. Mishler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations. Arch. Ration. Mech. Anal. 199 (2011) 493–525. [CrossRef] [Google Scholar]
- P.L. Lions and G. Toscani. Diffusive limits for finite velocity Boltzmann kinetic models. Rev. Mat. Iberoamer. 13 (1997) 473–513. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.