Free Access
Issue
ESAIM: M2AN
Volume 49, Number 2, March-April 2015
Page(s) 349 - 372
DOI https://doi.org/10.1051/m2an/2014035
Published online 19 February 2015
  1. J.P. Bourgade and F. Filbert, Convergence of a finite volume scheme for coagulation-fragmentation equations. Math. Comput. 77 (2008) 851–882. [CrossRef] [Google Scholar]
  2. P.B. Dubovskiǐ, Mathematical Theory of Coagulation. In vol. 23 of Lecture notes. Global Analysis Research Center, Seoul National university (1994). [Google Scholar]
  3. P.B. Dubovskiǐ, V.A. Galkin and I.W. Stewart, Exact solutions for the coagulation-fragmentation equations. J. Phys. A: Math. Gen. 25 (1992) 4737–4744. [Google Scholar]
  4. P.B. Dubovskiǐ and I.W. Stewart, Existence, uniqueness and mass conservation for the coagulation-fragmentation equation. Math. Meth. Appl. Sci. 19 (1996) 571–591. [CrossRef] [Google Scholar]
  5. A. Eibeck and W. Wagner, An efficient stochastic algorithm for studying coagulation dynamics and gelation phenomena. SIAM J. Sci. Comput. 22 (2000) 802–821. [CrossRef] [Google Scholar]
  6. A. Eibeck and W. Wagner, Stochastic particle approximations for Smoluchowski’s coagulation equation. Ann. Appl. Probab. 11 (2001) 1137–1165. [CrossRef] [Google Scholar]
  7. M. Escobedo, P. Laurençot, S. Mischler and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models. J. Differ. Equ. 195 (2003) 143–174. [CrossRef] [Google Scholar]
  8. R.C. Everson, D. Eyre and Q.P. Campbell, Spline method for solving continuous batch grinding and similarity equations. Comput. Chem. Eng. 21 (1997) 1433–1440. [CrossRef] [Google Scholar]
  9. F. Filbet and P. Laurençot, Mass-conserving solutions and non-conservative approximation to the smoluchowski coagulation equation. Arch. Math. 83 (2004) 558–567. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Filbet and P. Laurençot, Numerical simulation of the Smoluchowski coagulation equation. SIAM J. Sci. Comput. 25 (2004) 2004–2028. [CrossRef] [Google Scholar]
  11. N. Fournier and P. Laurençot, Existence of self-similar solutions to Smoluchowski’s coagulation equation. Commun. Math. Phys. 256 (2005) 589–609. [CrossRef] [Google Scholar]
  12. N. Fournier and P. Laurençot, Well-posedness of Smoluchowski’s coagulation equation for a class of homogeneous kernels. J. Funct. Anal. 233 (2006) 351–379. [CrossRef] [MathSciNet] [Google Scholar]
  13. A.K. Giri, Mathematical and numerical analysis for coagulation-fragmentation equations. Ph.D. Thesis. Otto-von-Guericke-University Magdeburg, Germany, 2010. [Google Scholar]
  14. A.K. Giri and E. Hausenblas, Convergence analysis of sectional methods for solving aggregation population balance equations: The fixed pivot technique. Nonlinear Anal. Real World Appl. 14 (2013) 2068–2090. [CrossRef] [Google Scholar]
  15. A.K. Giri, J. Kumar and G. Warnecke, The continuous coagulation equation with multiple fragmentation. J. Math. Anal. Appl. 374 (2011) 71–87. [CrossRef] [Google Scholar]
  16. A.K. Giri, Ph. Laurençot and G. Warnecke, Weak solutions to the continuous coagulation equation with multiple fragmentation. Nonlin. Anal. 75 (2012) 2199–2208. [CrossRef] [Google Scholar]
  17. A.K. Giri and G. Warnecke, Uniqueness for the continuous coagulation-fragmentation equation with strong fragmentation. Z. Angew. Math. Phys. 62 (2011) 1047–1063. [CrossRef] [MathSciNet] [Google Scholar]
  18. W. Hundsdorfer and J.G. Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations. Springer-Verlag New York, USA, 1st edition (2003). [Google Scholar]
  19. J. Kumar, M. Peglow, G. Warnecke and S. Heinrich, An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation. Powder Technol. 179 (2007) 205–228. [Google Scholar]
  20. J. Kumar, M. Peglow, G. Warnecke, S. Heinrich and L. Mörl, Improved accuracy and convergence of discretized population balance for aggregation: The cell average technique. Chem. Eng. Sci. 61 (2006) 3327–3342. [CrossRef] [Google Scholar]
  21. S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretization-I. A fixed pivot technique. Chem. Eng. Sci. 51 (1996) 1311–1332. [CrossRef] [Google Scholar]
  22. S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretization II. A moving pivot technique. Chem. Eng. Sci. 51 (1996) 1333–1342. [CrossRef] [Google Scholar]
  23. J. Kumar and G. Warnecke, Convergence analysis of sectional methods for solving breakage population balance equations - I: The fixed pivot technique. Numer. Math. 111 (2008) 81–108. [CrossRef] [MathSciNet] [Google Scholar]
  24. J. Kumar and G. Warnecke, Convergence analysis of sectional methods for solving breakage population balance equations - II: The cell average technique. Numer. Math. 110 (2008) 539–559. [CrossRef] [MathSciNet] [Google Scholar]
  25. W. Lamb, Existence and uniqueness results for the continuous coagulation and fragmentation equation. Math. Meth. Appl. Sci. 27 (2004) 703–721. [CrossRef] [Google Scholar]
  26. P. Laurençot, On a class of continuous coagulation- fragmentation equations. J. Differ. Equ. 167 (2000) 245–274 [CrossRef] [Google Scholar]
  27. P. Laurençot and S. Mischler, From the discrete to the continuous coagulation-fragmentation equations. Proc. Roy. Soc. Edinburgh 132A (2002) 1219–1248. [CrossRef] [Google Scholar]
  28. M.H. Lee, On the validity of the coagulation equation and the nature of runaway growth. Icarus 143 (2000) 74–86. [NASA ADS] [CrossRef] [Google Scholar]
  29. P. Linz, Convergence of a discretization method for integro-differential equations. Numer. Math. 25 (1975) 103–107. [CrossRef] [MathSciNet] [Google Scholar]
  30. D.J. McLaughlin, W. Lamb and A.C. McBride, A semigroup approach to fragmentation models. SIAM J. Math. Anal. 28 (1997) 1158–1172. [CrossRef] [MathSciNet] [Google Scholar]
  31. D.J. McLaughlin, W. Lamb and A.C. McBride, An existence and uniqueness result for a coagulation and multiple-fragmentation equation. SIAM J. Math. Anal. 28 (1997) 1173–1190. [CrossRef] [MathSciNet] [Google Scholar]
  32. M. Nicmanis and M.J. Hounslow, Finite-element methods for steady-state population balance equations. AICHE J. 44 (1998) 2258–2272. [CrossRef] [Google Scholar]
  33. S. Rigopoulos and A.G. Jones, Finite-element scheme for solution of the dynamic population balance equation. AICHE J. 49 (2003) 1127–1139. [CrossRef] [Google Scholar]
  34. J. Su, Z. Gu, Y. Li, S. Feng and X.Y. Xu, Solution of population balance equation using quadrature method of moments with an adjustable factor. Chem. Eng. Sci. 62 (2007) 5897–5911. [CrossRef] [Google Scholar]
  35. I.W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels. Math. Meth. Appl. Sci. 11 (1989) 627–648. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you