Free Access
Volume 49, Number 2, March-April 2015
Page(s) 373 - 394
Published online 19 February 2015
  1. E. Barkai and R.J. Silbey, Fractional Kramers equation. J. Phys. Chem. B 104 (2000) 3866–3874. [CrossRef] [Google Scholar]
  2. S. Carmi and E. Barkai, Fractional Feynman-Kac equation for weak ergodicity breaking. Phys. Rev. E 84 (2011) 061104. [CrossRef] [Google Scholar]
  3. S. Carmi, L. Turgeman and E. Barkai, On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141 (2010) 1071-1092. [CrossRef] [Google Scholar]
  4. M.H. Chen and W.H. Deng, Fourth order difference approximations for space Riemann–Liouville derivatives based on weighted and shifted Lubich difference operators. Commun. Comput. Phys. 16 (2014) 516–540. [Google Scholar]
  5. M.H. Chen and W.H. Deng, Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52 (2014) 1418-1438. [CrossRef] [Google Scholar]
  6. W.H. Deng, M.H. Chen and E. Barkai, Numerical algorithms for the forward and backward fractional Feynman-Kac equations. J. Sci. Comput. (2014). DOI: 10.1007/s10915-014-9873-6. [Google Scholar]
  7. G.M. Fikhtengoltz, Course of Differential and Integral Calculus, vol. 2. Nauka, Moscow (1969). [Google Scholar]
  8. R. Friedrich, F. Jenko, A. Baule and S. Eule, Anomalous diffusion of inertial, weakly damped particles. Phys. Rev. Lett. 96 (2006) 230601. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  9. R. Gorenflo and F. Mainardi, Fractional calculus: intergtal and differential equations of fractional order. Fractals and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri and F. Mainardi. Springer Verlag, Wien and New York (1997). [Google Scholar]
  10. P. Henrici, Discrete Variable Methods in Ordinary Differential Equations. John Wiley, New York (1962). [Google Scholar]
  11. Ch. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17 (1986) 704–719. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 (2000) 1–77. [NASA ADS] [CrossRef] [Google Scholar]
  13. R. Metzler and T.F. Nonnenmacher, Fractional diffusion, waiting-time distributions, and Cattaneo-type equations. Phys. Rev. E 57 (1998) 6409. [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Metzler and I.M. Sokolov, Superdiffusive Klein–Kramers equation: Normal and anomalous time evolution and Lévy walk moments. Europhys. Lett. 58 (2002) 482–488. [CrossRef] [Google Scholar]
  15. K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley-Interscience Publication, USA (1993). [Google Scholar]
  16. K.B. Oldham and J. Spanier, The Fractional Calculus. Academic Press, New York (1974). [Google Scholar]
  17. I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999). [Google Scholar]
  18. I.M. Sokolov and R. Metzler, Towards deterministic equations for Lévy walks: The fractional material derivative. Phys. Rev. E 67 (2003) 010101(R). [Google Scholar]
  19. W.Y. Tian, H. Zhou and W.H. Deng, A class of second order difference approximations for solving space fractional diffusion equations. To appear in Math. Comput. (2015). Doi:10.1090/S0025-5718-2015-02917-2. [Google Scholar]
  20. L. Turgeman, S. Carmi and E. Barkai, Fractional Feynman-Kac Equation for Non-Brownian Functionals. Phys. Rev. Lett. 103 (2009) 190201. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you