Free Access
Volume 49, Number 2, March-April 2015
Page(s) 331 - 347
Published online 05 February 2015
  1. A. Aziz and P. Monk, Continuous finite elements in space and time for the heat equation. Math. Comput. 52 (1989) 255–274. [CrossRef] [Google Scholar]
  2. E. Bänsch, P. Morin and R.H. Nochetto, Preconditioning a class of fourth order problems by operator splitting. Numer. Math. 118 (2011) 197–228. [CrossRef] [MathSciNet] [Google Scholar]
  3. R.D. Falgout, J.E. Jones and U.M. Yang, The design and implementation of hypre, a library of parallel high performance preconditioners. In Numerical solution of partial differential equations on parallel computers. Springer (2006) 267–294. [Google Scholar]
  4. S. Hussain, F. Schieweck and S. Turek, Higher order galerkin time discretizations and fast multigrid solvers for the heat equation. J. Numer. Math. 19 (2011) 41–61. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I. Springer, New York (1972). [Google Scholar]
  6. A. Logg, K.-A. Mardal and G. Wells, Automated solution of differential equations by the finite element method: The fenics book. Vol. 84. Springer (2012). [Google Scholar]
  7. P. Lesaint and P.A. Raviart, On a Finite Element Method for Solving the Neutron Transport Equation. Analyse Numérique. University Paris VI, Labo (1974). [Google Scholar]
  8. T. Richter, A. Springer and B. Vexler, Efficient numerical realization of discontinuous galerkin methods for temporal discretization of parabolic problems. Numer. Math. (2012) 1–32. [Google Scholar]
  9. F. Schieweck, A-stable discontinuous Galerkin–Petrov time discretization of higher order. J. Numer. Math. 18 (2010) 25–57. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Schieweck and G. Matthies, Higher order variational time discretizations for nonlinear systems of ordinary differential equations. Preprint 23/2011, Otto-von-Guericke-Universität Magdeburg (2011). [Google Scholar]
  11. D. Schötzau and C. Schwab, Time discretization of parabolic problems by the hp-version of the discontinuous galerkin finite element method. SIAM J. Numer. Anal. 38 (2000) 837–875. [CrossRef] [MathSciNet] [Google Scholar]
  12. D. Schötzau and C. Schwab, hp-discontinuous galerkin time-stepping for parabolic problems. C. R. Acad. Sci. Ser. I Math. 333 (2001) 1121–1126. [Google Scholar]
  13. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Number 1054 in Springer Lect. Notes Math. 2nd edition. Springer (1984). [Google Scholar]
  14. T. Werder, K. Gerdes, D. Schötzau and C. Schwab, hp-discontinuous galerkin time stepping for parabolic problems. Comput. Methods Appl. Mech. Eng. 190 (2001) 6685–6708. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you