Free Access
Volume 49, Number 2, March-April 2015
Page(s) 421 - 458
Published online 19 February 2015
  1. A. Alke and D. Bothe, 3D numerical modeling of soluble surfactant at fluidic interfaces based on the volume-of-fluid method. FDMP Fluid Dyn. Mater. Process. 5 (2009) 345–372. [Google Scholar]
  2. E. Bänsch, Finite element discretization of the Navier–Stokes equations with a free capillary surface. Numer. Math. 88 (2001) 203–235. [Google Scholar]
  3. J.W. Barrett, H. Garcke and R. Nürnberg, A stable parametric finite element discretization of two-phase Navier–Stokes flow. J. Sci. Comput. To appear in DOI: 10.1007/s10915-014-9885-2. [Google Scholar]
  4. J.W. Barrett and R. Nürnberg, Convergence of a finite-element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Numer. Anal. 24 (2004) 323–363. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.W. Barrett, H. Garcke and R. Nürnberg, Finite element approximation of surfactant spreading on a thin film. SIAM J. Numer. Anal. 41 (2003) 1427–1464. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.W. Barrett, H. Garcke and R. Nürnberg, A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222 (2007) 441–462. [CrossRef] [Google Scholar]
  7. J.W. Barrett, H. Garcke and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in ℝ3. J. Comput. Phys. 227 (2008) 4281–4307. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.W. Barrett, H. Garcke and R. Nürnberg, On stable parametric finite element methods for the Stefan problem and the Mullins–Sekerka problem with applications to dendritic growth. J. Comput. Phys. 229 (2010) 6270–6299. [CrossRef] [Google Scholar]
  9. J.W. Barrett, H. Garcke and R. Nürnberg, Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow. Comput. Methods Appl. Mech. Engrg. 267 (2013) 511–530. [Google Scholar]
  10. J.W. Barrett, H. Garcke and R. Nürnberg, Finite element approximation of one-sided Stefan problems with anisotropic, approximately crystalline, Gibbs–Thomson law. Adv. Differ. Eq. 18 (2013) 383–432. [Google Scholar]
  11. K. Bäumler and E. Bänsch, A subspace projection method for the implementation of interface conditions in a single-drop flow problem. J. Comput. Phys. 252 (2013) 438–457. [CrossRef] [Google Scholar]
  12. D. Bothe, M. Köhne and J. Prüss, On two-phase flows with soluble surfactant. Preprint (2012). Available at [Google Scholar]
  13. D. Bothe and J. Prüss, Stability of equilibria for two-phase flows with soluble surfactant. Quart. J. Mech. Appl. Math. 63 (2010) 177–199. [CrossRef] [MathSciNet] [Google Scholar]
  14. D. Bothe, J. Prüss and G. Simonett, Well-posedness of a two-phase flow with soluble surfactant. In Nonlinear elliptic and parabolic problems. In vol. 64 of Progr. Nonlinear Differ. Eq. Appl. (2005) 37–61. [Google Scholar]
  15. R. Clift, J.R. Grace and M.E. Weber, Bubbles, drops, and particles. Dover Publishing, Mineola, N.Y. (2005). [Google Scholar]
  16. K. Deckelnick, G. Dziuk and C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14 (2005) 139–232. [CrossRef] [MathSciNet] [Google Scholar]
  17. M.A. Drumright-Clarke and Y. Renardy, The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia. Phys. Fluids 16 (2004) 14–21. [CrossRef] [Google Scholar]
  18. G. Dziuk, An algorithm for evolutionary surfaces. Numer. Math. 58 (1991) 603–611. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Dziuk and C.M. Elliott, Finite elements on evolving surfaces. IMA J. Numer. Anal. 27 (2007) 262–292. [CrossRef] [MathSciNet] [Google Scholar]
  20. G. Dziuk and C.M. Elliott, Finite element methods for surface PDEs. Acta Numer. 22 (2013) 289–396. [CrossRef] [MathSciNet] [Google Scholar]
  21. C.M. Elliott, B. Stinner, V. Styles and R. Welford, Numerical computation of advection and diffusion on evolving diffuse interfaces. IMA J. Numer. Anal. 31 (2011) 786–812. [CrossRef] [MathSciNet] [Google Scholar]
  22. C.M. Elliott and V. Styles, An ALE ESFEM for solving PDEs on evolving surfaces. Milan J. Math. 80 (2012) 469–501. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Engblom, M. Do-Quang, G. Amberg and A.-K. Tornberg, On diffuse interface modeling and simulation of surfactants in two-phase fluid flow. Commun. Comput. Phys. 14 (2013) 879–915. [Google Scholar]
  24. S. Ganesan and L. Tobiska, A coupled arbitrary Lagrangian–Eulerian and Lagrangian method for computation of free surface flows with insoluble surfactants. J. Comput. Phys. 228 (2009) 2859–2873. [CrossRef] [Google Scholar]
  25. H. Garcke, K.F. Lam and B. Stinner, Diffuse interface modelling of soluble surfactants in two-phase flow. Commun. Math. Sci. 12 (2014) 1475–1522. [CrossRef] [Google Scholar]
  26. H. Garcke and S. Wieland, Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system. SIAM J. Math. Anal. 37 (2006) 2025–2048. [CrossRef] [MathSciNet] [Google Scholar]
  27. V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes. Springer-Verlag, Berlin (1986). [Google Scholar]
  28. S. Groß and A. Reusken, Numerical methods for two-phase incompressible flows. Vol. 40 of Springer Ser. Comput. Math. Springer-Verlag, Berlin (2011). [Google Scholar]
  29. S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan and L. Tobiska, Quantitative benchmark computations of two-dimensional bubble dynamics. Internat. J. Numer. Methods Fluids 60 (2009) 1259–1288. [Google Scholar]
  30. A.J. James and J. Lowengrub, A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201 (2004) 685–722. [CrossRef] [Google Scholar]
  31. S. Khatri and A.-K. Tornberg, A numerical method for two phase flows with insoluble surfactants. Comput. Fluids 49 (2011) 150–165. [CrossRef] [Google Scholar]
  32. M.-C. Lai, Y.-H. Tseng and H. Huang, An immersed boundary method for interfacial flows with insoluble surfactant. J. Comput. Phys. 227 (2008) 7279–7293. [CrossRef] [Google Scholar]
  33. M. Muradoglu and G. Tryggvason, A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227 (2008) 2238–2262. [CrossRef] [Google Scholar]
  34. C. Pozrikidis, A finite-element method for interfacial surfactant transport, with application to the flow-induced deformation of a viscous drop. J. Eng. Math. 49 (2004) 163–180. [CrossRef] [Google Scholar]
  35. Y.Y. Renardy, M. Renardy and V. Cristini, A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio. Eur. J. Mech. B Fluids 21 (2002) 49–59. [CrossRef] [Google Scholar]
  36. A. Schmidt and K.G. Siebert, Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA. Vol. 42 of Lect. Notes Comput. Sci. Eng. Springer-Verlag, Berlin (2005). [Google Scholar]
  37. K.E. Teigen, X. Li, J. Lowengrub, F. Wang and A. Voigt, A diffuse-interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformable interface. Commun. Math. Sci. 7 (2009) 1009–1037. [CrossRef] [Google Scholar]
  38. K.E. Teigen and S.T. Munkejord, Influence of surfactant on drop deformation in an electric field. Phys. Fluids 22 (2010) 112104. [CrossRef] [Google Scholar]
  39. J.-J. Xu, Y. Huang, M.-C. Lai and Z. Li, A coupled immersed interface and level set method for three-dimensional interfacial flows with insoluble surfactant. Commun. Comput. Phys. 15 (2014) 451–469. [Google Scholar]
  40. J.-J. Xu, Z. Li, J. Lowengrub and H. Zhao, A level-set method for interfacial flows with surfactant. J. Comput. Phys. 212 (2006) 590–616. [CrossRef] [Google Scholar]
  41. J.-J. Xu, Y. Yang and J. Lowengrub, A level-set continuum method for two-phase flows with insoluble surfactant. J. Comput. Phys. 231 (2012) 5897–5909. [CrossRef] [Google Scholar]
  42. X. Yang and A.J. James, An arbitrary Lagrangian–Eulerian (ALE) method for interfacial flows with insoluble surfactants. FDMP Fluid Dyn. Mater. Process. 3 (2007) 65–95. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you