Free Access
Volume 49, Number 2, March-April 2015
Page(s) 395 - 420
Published online 19 February 2015
  1. M. Asadzadeh and A. Sopasakis, Convergence of a hp-streamline diffusion scheme for Vlasov-Fokker-Planck system. Math. Models Methods Appl. Sci. 17 (2007) 1159–1182. [CrossRef] [Google Scholar]
  2. K. Beauchard and E. Zuazua, Some controllability results for the 2D Kolmogorov equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 26 (2009) 1793–1815. [CrossRef] [Google Scholar]
  3. C. Buet, S. Cordier, P. Degond and M. Lemou, Fast algorithms for numerical, conservative, and entropy approximations of the Fokker-Planck-Landau equation. J. Comput. Phys. 133 (1997) 310–322. [CrossRef] [Google Scholar]
  4. C. Buet, S. Dellacherie and R. Sentis, Numerical solution of an ionic Fokker-Planck equation with electronic temperature. SIAM J. Numer. Anal. 39 (2001) 1219–1253. (electronic) [CrossRef] [Google Scholar]
  5. María J. Cáceres, José A. Carrillo and Louis Tao, A numerical solver for a nonlinear Fokker-Planck equation representation of neuronal network dynamics. J. Comput. Phys. 230 (2011) 1084–1099. [CrossRef] [Google Scholar]
  6. J.A. Carrillo, M.P. Gualdani and A. Jüngel, Convergence of an entropic semi-discretization for nonlinear Fokker-Planck equations in Rd. Publ. Mat. 52 (2008) 413–433. [CrossRef] [MathSciNet] [Google Scholar]
  7. N. Crouseilles and F. Filbet, A conservative and entropic method for the Vlasov-Fokker-Planck-Landau equation. In vol. 7 of Numerical methods for hyperbolic and kinetic problems, IRMA Lect. Math. Theor. Phys. Eur. Math. Soc. Zürich (2005) 59–70. [Google Scholar]
  8. N. Crouseilles and F. Filbet, Numerical approximation of collisional plasmas by high order methods. J. Comput. Phys. 201 (2004) 546–572. [CrossRef] [Google Scholar]
  9. P. Degond and B. Lucquin-Desreux, An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory. Numer. Math. 68 (1994) 239–262. [CrossRef] [MathSciNet] [Google Scholar]
  10. W. Deng, Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47 (2008/2009) 204–226. [CrossRef] [Google Scholar]
  11. L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Commun. Pure Appl. Math. 54 (2001) 1–42. [CrossRef] [MathSciNet] [Google Scholar]
  12. J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms. C. R. Math. Acad. Sci. Paris 347 (2009) 511–516. [CrossRef] [MathSciNet] [Google Scholar]
  13. R. Duclous, B. Dubroca, F. Filbet and V. Tikhonchuk, High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications. J. Comput. Phys. 228 (2009) 5072–5100. [CrossRef] [Google Scholar]
  14. F. Filbet and L. Pareschi, Numerical solution of the Fokker-Planck-Landau equation by spectral methods. Commun. Math. Sci. 1 (2003) 206–207. [CrossRef] [Google Scholar]
  15. I.M. Gamba, M. Pia Gualdani and R.W. Sharp, An adaptable discontinuous Galerkin scheme for the Wigner-Fokker-Planck equation. Commun. Math. Sci. 7 (2009) 635–664. [CrossRef] [Google Scholar]
  16. M.J. Gander and A.M. Stuart, Space-time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput. 19 (1998) 2014–2031. [CrossRef] [MathSciNet] [Google Scholar]
  17. M.J. Gander and L. Halpern, Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45 (2007) 666–697. (electronic) [CrossRef] [MathSciNet] [Google Scholar]
  18. M.J. Gander and L. Halpern, Méthodes de décomposition de domaines pour l’équation des ondes en dimension 1. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 589–592. [CrossRef] [MathSciNet] [Google Scholar]
  19. M.J. Gander and L. Halpern, Un algorithme discret de décomposition de domaines pour l’équation des ondes en dimension 1. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 699–702. [CrossRef] [MathSciNet] [Google Scholar]
  20. M.J. Gander, L. Halpern and F. Nataf, Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation. In Eleventh International Conference on Domain Decomposition Methods (London, 1998),, Augsburg (1999) 27–36. (electronic) [Google Scholar]
  21. M.J. Gander, L. Halpern and F. Nataf, Optimized Schwarz methods. In Domain decomposition methods in sciences and engineering (Chiba, 1999), Augsburg (2001) 15–27. (electronic) [Google Scholar]
  22. M.J. Gander, L. Halpern and F. Magoulès, An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation. Internat. J. Numer. Methods Fluids 55 (2007) 163–175. [Google Scholar]
  23. L. Halpern, Optimized Schwarz waveform relaxation: roots, blossoms and fruits. In vol. 70 of Domain decomposition methods in science and engineering XVIII. Lect. Notes Comput. Sci. Eng. Springer, Berlin (2009) 225–232. [Google Scholar]
  24. L. Hörmander, Hypoelliptic second order differential equations. Acta Math. 119 (1967) 147–171. [CrossRef] [MathSciNet] [Google Scholar]
  25. D.J. Knezevic and E. Süli, Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift. ESAIM: M2AN 43 (2009) 445–485. [CrossRef] [EDP Sciences] [Google Scholar]
  26. O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Uraceva, Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Vol. 23 of Translations of Mathematical Monographs. American Mathematical Society, Providence, R.I. (1967) [Google Scholar]
  27. M. Lakestani and M. Dehghan, Numerical solution of Fokker-Planck equation using the cubic B-spline scaling functions. Numer. Methods Partial Differ. Eq. 25 (2009) 418–429. [CrossRef] [Google Scholar]
  28. M. Lemou and L. Mieussens, Implicit schemes for the Fokker-Planck-Landau equation. SIAM J. Sci. Comput. 27 (2005) 809–830. (electronic) [CrossRef] [Google Scholar]
  29. G.I. Marchuk, Splitting and alternating direction methods. In Vol. I of Handbook of numerical analysis, Handb. Numer. Anal. North-Holland, Amsterdam (1990) 197–462. [Google Scholar]
  30. D. Milić, Explicit method for the numerical solution of the Fokker-Planck equation of filtered phase noise. Approximation and computation. Vol. 42 of Springer Optim. Appl. Springer, New York (2011) 401–407. [Google Scholar]
  31. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin (1994). [Google Scholar]
  32. J. Schaeffer, Convergence of a difference scheme for the Vlasov-Poisson-Fokker-Planck system in one dimension. SIAM J. Numer. Anal. 35 (1998) 1149–1175. [CrossRef] [Google Scholar]
  33. M.-B. Tran, Parallel Schwarz waveform relaxation method for a semilinear heat equation in a cylindrical domain. C. R. Math. Acad. Sci. Paris 348 (2010) 795–799. [CrossRef] [MathSciNet] [Google Scholar]
  34. M.-B. Tran, A parallel four step domain decomposition scheme for coupled forward-backward stochastic differential equations. J. Math. Pures Appl. 96 (2011) 377–394. [CrossRef] [Google Scholar]
  35. M.-B. Tran, Optimized overlapping domain decomposition: Convergence proofs. In vol. 91 of Domain Decomposition Methods in Science and Engineering XXI. Lect. Notes Comput. Sci. Eng. Springer-Verlag (2013) 493–500. [Google Scholar]
  36. M.-B Tran, Overlapping optimized Schwarz methods for parabolic equations in n dimensions. Proc. Amer. Math. Soc. 141 (2013) 1627–1640. [CrossRef] [MathSciNet] [Google Scholar]
  37. M.-B. Tran, Parallel schwarz waveform relaxation algorithm for an n-dimensional semilinear heat equation. ESAIM: M2AN 48 (2014) 795–813. [CrossRef] [EDP Sciences] [Google Scholar]
  38. C. Villani, Hypocoercive diffusion operators. In vol. III of International Congress of Mathematicians. Eur. Math. Soc., Zürich (2006) 473–498. [Google Scholar]
  39. D.V. Widder, The Laplace Transform. Vol. 6 of Princeton Mathematical Series. Princeton University Press, Princeton, N. J. (1941) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you