Free Access
Volume 49, Number 2, March-April 2015
Page(s) 459 - 480
Published online 04 March 2015
  1. G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement. Proc. Amer. Math. Soc. 133 (2005) 1685–1691. [CrossRef] [MathSciNet] [Google Scholar]
  2. H. Ammari, J. Garnier, H. Kang, M. Lim and K. Sølna, Multistatic imaging of extended targets. SIAM J. Imaging Sci. 5 (2012) 564–600. [CrossRef] [Google Scholar]
  3. G. Bao and F. Triki, Error estimates for the recursive linearization of inverse medium problems. J. Comput. Math. 28 (2010) 725–744. [Google Scholar]
  4. K. Belkebir, S. Bonnard, F. Pezin and P. Sabouroux and M. Saillard, Validation of 2D inverse scattering algorithms from multi-frequency experimental data. J. Electromagn. Waves Appl. 14 (2000) 1637–1667. [CrossRef] [Google Scholar]
  5. S.N. Chandler-Wilde and P. Monk, Wave-number-explicit bounds in time-harmonic scattering. SIAM J. Math. Anal. 39 (2008) 1428–1455. [CrossRef] [MathSciNet] [Google Scholar]
  6. Y. Chen, Inverse scattering via Heisenberg’s uncertainty principle. Inverse Probl. 13 (1997) 253–282. [CrossRef] [Google Scholar]
  7. J. Cheng and M. Yamamoto, Global uniqueness in the inverse acoustic scattering problem within polygonal obstacles. Chin. Ann. Math. Ser. B 25 (2004) 1–6. [CrossRef] [Google Scholar]
  8. W. Chew and J. Lin, A frequency-hopping approach for microwave imaging of large inhomogeneous bodies. IEEE Microwave Guided Wave Lett. 5 (1995) 439–441. [CrossRef] [Google Scholar]
  9. D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region. Inverse Probl. 12 (1996) 383–393. [CrossRef] [Google Scholar]
  10. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 3rd edn. Springer, New York, 2013. [Google Scholar]
  11. D. Colton and B.D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering. IMA J. Appl. Math. 31 (1983) 253–259. [CrossRef] [MathSciNet] [Google Scholar]
  12. M.V. de Hoop, L. Qiu and O. Scherzer, A convergence analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in banach spaces subject to stability constraints. Preprint arXiv:1206.3706 [math.NA]. [Google Scholar]
  13. G.B. Folland, Fourier analysis and its applications. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA (1992). [Google Scholar]
  14. D. Gintides, Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality. Inverse Probl. 21 (2005) 1195–1205. [CrossRef] [Google Scholar]
  15. R. Griesmaier, Multi-frequency orthogonality sampling for inverse obstacle scattering problems. Inverse Probl. 27 (2011) 085005. [CrossRef] [Google Scholar]
  16. B.B. Guzina, F. Cakoni and C. Bellis, On the multi-frequency obstacle reconstruction via the linear sampling method. Inverse Probl. 26 (2010) 125005. [CrossRef] [Google Scholar]
  17. N. Honda, G. Nakamura and M. Sini, Analytic extension and reconstruction of obstacles from few measurements for elliptic second order operators. Math. Annalen (2012). DOI: 10.1007/s00208-012-0786-0. [Google Scholar]
  18. V. Isakov, Inverse Problems for Partial Differential Equations, 2nd edn. Springer, New York (2006). [Google Scholar]
  19. A. Kirsch. The domain derivative and two applications in inverse scattering theory. Inverse Probl. 9 (1993) 81–96. [CrossRef] [MathSciNet] [Google Scholar]
  20. X. Liu and B. Zhang, Unique determination of a sound-soft ball by the modulus of a single far field datum. J. Math. Anal. Appl. (2010) 619–624. [Google Scholar]
  21. P.A. Martin, Multiple scattering. Interaction of time-harmonic waves with N obstacles. In vol. 107 of Encycl. Math. Appl. Cambridge University Press, Cambridge (2006). [Google Scholar]
  22. W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000). [Google Scholar]
  23. J.M. Melenk, Mapping properties of combined field Helmholtz boundary integral operators. SIAM J. Math. Anal. 44 (2012) 2599–2636. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Potthast, Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Probl. 10 (1994) 431–447. [CrossRef] [Google Scholar]
  25. R. Potthast, A study on orthogonality sampling. Inverse Probl. 26 (2010) 074015. [CrossRef] [Google Scholar]
  26. A.G. Ramm, Multidimensional inverse scattering problems. Longman Scientific & Technical, Harlow (1992). [Google Scholar]
  27. E. Sincich and M. Sini, Local stability for soft obstacles by a single measurement. Inverse Probl. Imaging 2 (2008) 301–315. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Sini and N.T. Thành, Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Probl. Imaging 6 (2012) 749–773. [CrossRef] [MathSciNet] [Google Scholar]
  29. P. Stefanov and G. Uhlmann, Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering. Proc. Amer. Math. Soc. 132 (2004) 1351–1354 (electronic). [Google Scholar]
  30. A. Tijhuis, K. Belkebir, A. Litman and B. de Hon, Multi-frequency distorted-wave Born approach to 2D inverse profiling. Inverse Probl. 17 (2001) 1635–1644. [CrossRef] [Google Scholar]
  31. A. Tijhuis, K. Belkebir, A. Litman and B. de Hon, Theoretical and computational aspects of 2-D inverse profiling. IEEE Trans. Geosci. Remote Sensing 39 (2001) 1316–1330. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you