Free Access
Issue
ESAIM: M2AN
Volume 49, Number 4, July-August 2015
Page(s) 991 - 1018
DOI https://doi.org/10.1051/m2an/2014063
Published online 19 June 2015
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  2. E. Burman, A. Ern and M.A. Fernandez, Explicit Runge–Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems. SIAM. J. Numer. Anal. 48 (2010) 2019–2042. [Google Scholar]
  3. P.G. Ciarlet, Finite Element Method for Elliptic Problems. North–Holland, Amsterdam (1978). [Google Scholar]
  4. B. Cockburn and J. Guzmán, Error estimates for the Runge–Kutta discontinuous Galerkin method for the transport equation with discontinuous initial data. SIAM. J. Numer. Anal. 46 (2008) 1364–1398. [CrossRef] [MathSciNet] [Google Scholar]
  5. B. Cockburn and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework. Math. Comput. 52 (1989) 411–435. [Google Scholar]
  6. B. Cockburn and C.-W. Shu, The Runge–Kutta local projection P1-discontinuous Galerkin method for scalar conservation laws. RAIRO Modél. Math. Anal. Numér. 25 (1991) 337–361. [Google Scholar]
  7. B. Cockburn and C.-W. Shu, The Runge–Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems J. Comput. Phys. 141 (1998a) 199–224. [CrossRef] [MathSciNet] [Google Scholar]
  8. B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems SIAM. J. Numer. Anal. 35 (1998b) 2440–2463. [Google Scholar]
  9. B. Cockburn and C.-W. Shu, Runge–Kutta discontinuous Galerkin methods for convection-dominated problems J. Sci. Comput. 16 (2001) 173–261. [CrossRef] [MathSciNet] [Google Scholar]
  10. B. Cockburn, S. Hou, and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comp. 54 (1990) 545–581. [MathSciNet] [Google Scholar]
  11. B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor, An introduction to the discontinuous Galerkin method for convection-dominated problems, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, edited by Quarteroni. Vol. 1697 of Lect. Notes Math. Springer, Berlin (1998) 151–268. [Google Scholar]
  12. B. Cockburn, S.-Y. Lin, and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J. Comput. Phys. 84 (1989) 90–113. [CrossRef] [MathSciNet] [Google Scholar]
  13. G.H. Golub and C.F. Van Loan, Matrix Computations. Posts and Telecom Press (2011). [Google Scholar]
  14. A. Harten, On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49 (1983a) 151–164. [CrossRef] [Google Scholar]
  15. A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983b) 357–393. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  16. S.-M. Hou and X.-D. Liu, Solutions of multidimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous Galerkin method. J. Sci. Comput. 31 (2007) 127–151. [CrossRef] [Google Scholar]
  17. G.-S. Jiang and C.-W. Shu, On cell entropy inequality for discontinuous Galerkin methods. Math. Comp. 62 (1994) 531–538. [CrossRef] [MathSciNet] [Google Scholar]
  18. C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp. 46 (1986) 1–26. [Google Scholar]
  19. R. Kress, Numerical analysis. Springer-Verlag (1998). [Google Scholar]
  20. P. Lesaint and P.A. Raviart, On a finite element method for solving the neutron transport equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations, edited by C. de Boor. Academic Press, New York (1974) 89–145. [Google Scholar]
  21. J. Luo, A priori error estimates to Runge–Kutta discontinuous Galerkin finite element method for symmetrizable system of conservation laws with sufficiently smooth solutions. Ph.D. thesis, Nanjing University (2013). [Google Scholar]
  22. S. Osher, Riemann solvers, the entropy condition, and difference approximations. SIAM. J. Numer. Anal. 21 (1984) 217–235. [CrossRef] [MathSciNet] [Google Scholar]
  23. W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory report LA-UR-73-479, Los Alamos, NM (1973). [Google Scholar]
  24. P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357–372. [Google Scholar]
  25. C.W. Schulz-Rinne, Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24 (1993) 76–88. [CrossRef] [MathSciNet] [Google Scholar]
  26. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77 (1988) 439–471. [Google Scholar]
  27. E.F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer (2009). [Google Scholar]
  28. Q. Zhang, Third order explicit Runge–Kutta discontinuous Galerkin method for linear conservation law with inflow boundary condition. J. Sci. Comput. 46 (2010) 294–313. [Google Scholar]
  29. Q. Zhang and C.-W. Shu, Error estimates to smooth solution of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM. J. Numer. Anal. 42 (2004) 641–666. [Google Scholar]
  30. Q. Zhang and C.-W. Shu, Error estimates to smooth solution of Runge–Kutta discontinuous Galerkin methods for symmetrizable system of conservation laws. SIAM. J. Numer. Anal. 44 (2006) 1702–1720. [Google Scholar]
  31. Q. Zhang and C.-W. Shu, Stability analysis and a priori error estimates to the third order explicit Runge–Kutta discontinuous Galerkin Method for scalar conservation laws. SIAM. J. Numer. Anal. 48 (2010) 1038–1063. [Google Scholar]
  32. Q. Zhang and C.-W. Shu, Error estimates for the third order explicit Runge–Kutta discontinuous Galerkin method for a linear hyperbolic equation in one-dimension with discontinuous initial data. Numer. Math. 126 (2014) 703–740. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you