Free Access
Issue |
ESAIM: M2AN
Volume 49, Number 4, July-August 2015
|
|
---|---|---|
Page(s) | 1193 - 1217 | |
DOI | https://doi.org/10.1051/m2an/2015003 | |
Published online | 30 June 2015 |
- M. Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis. Pure Appl. Math. Wiley-Interscience [John Wiley & Sons], New York (2000). [Google Scholar]
- M. Aurada, M. Feischl, T. Führer, M. Karkulik and D. Praetorius, Efficiency and Optimality of Some Weighted–Residual Error Estimator for Adaptive 2D Boundary Element Methods. Comput. Methods Appl. Math. 13 (2013) 305–332. [CrossRef] [MathSciNet] [Google Scholar]
- M. Aurada, M. Feischl, T. Führer, M. Karkulik and D. Praetorius, Energy norm based error estimators for adaptive BEM for hypersingular integral equations. Appl. Numer. Math. (2014). [Google Scholar]
- R.E. Bank, Hierarchical bases and the finite element method. In vol. 5 of Acta Numer. Cambridge Univ. Press, Cambridge (1996) 1–43. [Google Scholar]
- A. Berger, R. Scott and G. Strang, Approximate boundary conditions in the finite element method. In vol. X, Symposia Mathematica (Convegno di Analisi Numerica, INDAM, Rome, 1972). Academic Press, London (1972) 295–313. [Google Scholar]
- A. Bespalov and N. Heuer, The hp-version of the boundary element method with quasi-uniform meshes in three dimensions. ESAIM: M2AN 42 (2008) 821–849. [CrossRef] [EDP Sciences] [Google Scholar]
- P. Binev, W. Dahmen and R. DeVore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bonito and R.H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48 (2010) 734–771. [CrossRef] [Google Scholar]
- A. Buffa, M. Costabel and D. Sheen, On traces for H(curl,Ω) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. [CrossRef] [MathSciNet] [Google Scholar]
- C. Carstensen and D. Praetorius, Averaging techniques for the a posteriori BEM error control for a hypersingular integral equation in two dimensions. SIAM J. Sci. Comput. 29 (2007) 782–810. [CrossRef] [Google Scholar]
- C. Carstensen, M. Maischak, D. Praetorius and E.P. Stephan, Residual-based a posteriori error estimate for hypersingular equation on surfaces. Numer. Math. 97 (2004) 397–425. [CrossRef] [MathSciNet] [Google Scholar]
- Ph. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. [Google Scholar]
- C. Domínguez and N. Heuer, A posteriori error analysis for a boundary element method with non-conforming domain decomposition. Numer. Methods Partial Differ. Eq. 30 (2014) 947–963. [CrossRef] [Google Scholar]
- W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet] [Google Scholar]
- W. Dörfler and R.H. Nochetto, Small data oscillation implies the saturation assumption. Numer. Math. 91 (2002) 1–12. [CrossRef] [MathSciNet] [Google Scholar]
- Ch. Erath, S. Ferraz-Leite, S. Funken and D. Praetorius, Energy norm based a posteriori error estimation for boundary element methods in two dimensions. Appl. Numer. Math. 59 (2009) 2713–2734. [CrossRef] [Google Scholar]
- V.J. Ervin and N. Heuer, An adaptive boundary element method for the exterior Stokes problem in three dimensions. IMA J. Numer. Anal. 26 (2006) 297–325. [CrossRef] [MathSciNet] [Google Scholar]
- S. Ferraz-Leite and D. Praetorius, Simple a posteriori error estimators for the h-version of the boundary element method. Computing 83 (2008) 135–162. [CrossRef] [MathSciNet] [Google Scholar]
- S. Ferraz-Leite, C. Ortner and D. Praetorius, Convergence of simple adaptive Galerkin schemes based on h − h/ 2 error estimators. Numer. Math. 116 (2010) 291–316. [CrossRef] [MathSciNet] [Google Scholar]
- G.N. Gatica, M. Healey and N. Heuer, The boundary element method with Lagrangian multipliers. Numer. Methods Partial Differ. Eq. 25 (2009) 1303–1319. [CrossRef] [Google Scholar]
- I.G. Graham, W. Hackbusch and S.A. Sauter, Finite elements on degenerate meshes: inverse-type inequalities and applications. IMA J. Numer. Anal. 25 (2005) 379–407. [CrossRef] [MathSciNet] [Google Scholar]
- E. Hairer, S.P. Nørsett and G. Wanner, Solving ordinary differential equations. I, Nonstiff problems. In vol. 8 of Springer Ser. Comput. Math. Springer-Verlag, Berlin (1987). [Google Scholar]
- N. Heuer, On the equivalence of fractional-order Sobolev semi-norms. J. Math. Anal. Appl. 417 (2014) 505–518. [CrossRef] [MathSciNet] [Google Scholar]
- N. Heuer and F.-J. Sayas, Crouzeix–Raviart boundary elements. Numer. Math. 112 (2009) 381–401. [CrossRef] [MathSciNet] [Google Scholar]
- M. Karkulik, D. Pavlicek and D. Praetorius, On 2D Newest Vertex Bisection: Optimality of Mesh–Closure and H1-Stability of L2-Projection. Constr. Approx. 38 (2013) 213–234. [CrossRef] [MathSciNet] [Google Scholar]
- W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000). [Google Scholar]
- J.-C. Nédélec, Integral equations with nonintegrable kernels. Int. Eq. Oper. Theory 5 (1982) 562–572. [CrossRef] [Google Scholar]
- E.P. Stephan, Boundary integral equations for screen problems in R3. Int. Eq. Oper. Theory 10 (1987) 257–263. [Google Scholar]
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
- R. Stevenson, Optimality of a standard adaptive finite element method. Found. Comput. Math. 7 (2007) 245–269. [CrossRef] [MathSciNet] [Google Scholar]
- H. Triebel, Interpolation theory, function spaces, differential operators, 2nd edn. Edited by Johann Ambrosius Barth, Heidelberg (1995). [Google Scholar]
- R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. B.G. Teubner, Stuttgart (1996). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.