Issue
ESAIM: M2AN
Volume 49, Number 6, November-December 2015
Special Issue - Optimal Transport
Page(s) 1607 - 1619
DOI https://doi.org/10.1051/m2an/2015022
Published online 05 November 2015
  1. G. Allaire, Shape Optimization by the Homogenization Method. Springer Verlag, New York (2002). [Google Scholar]
  2. O. Alvarez, P. Cardaliaguet and R. Monneau, Existence and uniqueness for dislocation dynamics with nonnegative velocity. Interfaces and Free Boundaries 7 (2005) 415–434. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000). [Google Scholar]
  4. M. Beckmann, A continuous model of transportation. Econometrica 20 (1952) 643–660. [Google Scholar]
  5. A. Braides, Relaxation of functionals with constraint on the divergence. Ann. Univ. Ferrara 33 (1987) 157–177. [Google Scholar]
  6. A. Braides, B. Cassano, A. Garroni and D. Sarrocco, Evolution of damage in composites: the one-dimensional case. Preprint (2013). Avalaible at http://cvgmt.sns.it. [Google Scholar]
  7. L. Brasco and G. Carlier, On certain anisotropic elliptic equation arising in congested optimal transport: local gradient bounds. Adv. Calc. Var. (to appear). [Google Scholar]
  8. L. Brasco, G. Carlier and F. Santambrogio, Congested traffic dynamics, weak flows and very degenerate elliptic equations. J. Math. Pures Appl. 93 (6) (2010) 652–671. [CrossRef] [MathSciNet] [Google Scholar]
  9. D. Bucur, G. Buttazzo, Variational Methods in Shape Optimization Problems. Vol. 65 of Progress Nonlin. Differ. Equ. Birkhäuser Verlag, Basel (2005). [Google Scholar]
  10. G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Vol. 207 of Pitman Res. Notes Math. Ser. Longman, Harlow (1989). [Google Scholar]
  11. G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions. In Variational Methods for Discontinuous Structures, Cernobbio 2001. Vol. 51 of Progr. Nonlin. Differ. Equ. Birkhäuser Verlag, Basel (2002) 41–65. [Google Scholar]
  12. G. Buttazzo, A. Pratelli, S. Solimini and E. Stepanov, Optimal urban networks via mass transportation. In vol. 1961 of Lect. Notes Math. Springer-Verlag, Berlin (2009). [Google Scholar]
  13. G. Buttazzo, F. Santambrogio and E. Stepanov, Asymptotic optimal location of facilities in a competition between population and industries. Ann. Sc. Norm. Super. Pisa Cl. Sci. 12 (2013) 239–273. [MathSciNet] [Google Scholar]
  14. G. Carlier, C. Jimenez and F. Santambrogio, Optimal transportation with traffic congestion and Wardrop equilibria. SIAM J. Control Optim. 47 (2008) 1330–1350. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Henrot and M. Pierre, Variation et Optimisation de Formes. Une Analyse Géométrique. Vol. 48 of Math. Appl. Springer-Verlag, Berlin (2005). [Google Scholar]
  16. A. Lemenant, A presentation of the average distance minimizing problem. J. Math. Sci. 181 (2012) 820–836. [CrossRef] [MathSciNet] [Google Scholar]
  17. C.T. Kelley, Iterative methods for optimization. Soc. Indus. Appl. Math. SIAM, Philadelphia (1999). [Google Scholar]
  18. J.G. Wardrop, Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. 2 (1952) 325–378. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you